Remarks on fast transition radiation detectors

A. Andronic – GSI Darmstadt

- A high rate detector: ATLAS TRT *
- A useful comparison: ALICE vs. ATLAS
- Possible (arranged) marriages
- Summary

^{*} Thanks to Anatoli Romaniouk for making available his slides on ATLAS TRT

Vhat makes a TRD slow ? (...could make it fast ?)

or efficient TR (\sim 2-20 keV) absorption one needs:

Some detector thickness (~ 2 cm) \rightarrow long drift times

Xenon (\sim 3x slower than Ar) \rightarrow space charge effects

Get a faster gas mixture and/or slice the detector \rightarrow Get a gas mixture with working point at high field

ATLAS Inner detector concept

General requirements:

- Combination of Central Tracker and **TRD** features
- Robust pattern recognition

- Bunch crossing rate 40 MHz (25 ns between interactions)
- Interactions per year -**10**¹⁶
- Selection level (Higgs) ~ 1:1013

Detector elements: Straws

Straw design

Detection gas: $70\% \text{ Xe} + 20\% \text{ CF}_4 + 10\% \text{ CO}_2$

Detector elements: Ageing effects

Wire ageing effects

I. Gold damage

- Effect is strong if water content is 1-1.5%
- Fifect even stronger if there are H₂O and O₂ in the mixture
- NO effect up to 20 C/cm if water content below 0.1%.

II. Silicon deposits

- This effect is observed for rather low dose rates corresponding to a luminosity of 10³³-10³⁴
- Can the detector materials be a source of Si contamination? What are the possible external sources of Si contamination (gas system, gas itself, etc)?

Anatoli Romaniouk, TRD Workshop, Bari, 20-23 Sept. 2001

Detector concept

TRT global parameters

Length: Total	6802 cm	N straws:	Total	372032
Barrel	148 cm		Barrel	52544
End-cap	257 cm		End-cap	319488
Outer diameter	206 cm	N electronics	channels	424576
Inner diameter	96-128 cm	Weight	~ 1	500 kg

Anatoli Romaniouk, TRD Workshop, Bari, 20-23 Sept. 2001

Operation conditions

TRT conditions in the ATLAS experiment

Number of particles at a distance of 1 m from interaction point:

Charged ~ 105 hadrons/cm2 sec

Photons ~ 10⁶ photons/cm² sec

Neutrons ~106 n/cm2 sec

Total dose for detector parts after 10 years of LHC operation:

Neutron ~10¹⁴ n/cm² Charged particles ~10 MRad

Some operation parameters for gas detector

- Counting rate per wire up to 20 MHz
- Ionis. current density up to 0.15 μA/cm
- Ionis. current per wire up to 10 μA
- Power dissipated by ionisation current per straw ~15 mW
- Charge collected over 10 years of LHC operation ~10 C/cm
- Total charge per 1 m of wire ~1000 C
- Total ionisation current in the detector volume ~ 3 A
- Total dissipated energy in the detector volume from ionising particles ~5 kW

Accessibility is very limited during ATLAS operation

Detector must be very stable operationally!

TRT Test beam prototypes

TRT prototypes: Drift-Time Accuracy

Track-to-measured position residual, mm

End-cap sector prototype with the LHC electronics in the 25 ns beam (May 2000)

- · Threshold: 200 eV (~2fC)
- · Hit registration efficiency: 97%
- Drift-time measurement efficiency within ± 2.5 σ road: 87%

Anatoli Romaniouk, TRD Workshop, Bari, 20-23 Sept. 2001

comparison of TRDs: the high-granularity and the high-rate

ALICE TRD

of the detector

anels / Number of layers ared area / Occupancy rage channel size at a per channel action gas $[\text{cm}/\mu\text{s}]$ lout (at 90% e efficiency)

th $[tons] / Volume [m^3] / X [X_0]$

) timespan

$$1.16 \times 10^{6} / 6$$
 $100 \text{ m}^{2} / 10\text{-}34\%$
 $5.2 \text{ cm}^{2} (\ 1\text{-}2 \text{ cm}^{2})$
 $100\text{-}500 \text{ Hz} (\ 2\text{-}4 \text{ kHz})$
 $\text{Xe} + 15\% \text{ CO}_{2}$
 $4.0 (@ 1.5 \text{ kV/cm})$
 $\text{FADC (12 time bins)}$
 100
 $<6\% (p < 10 \text{ GeV/c}; B=0.4 \text{ T})$
 $21 / 96 / 15\%$
 4 years

ATLAS TRT

 $4.25 \times 10^{5} / 36$ $26 \text{ m}^{2} / 13-38\%$ $22 \text{ cm}^{2} (\searrow \sim 10 \text{ cm}^{2})$ 10-12 MHz

 $\begin{array}{c} {\rm Xe+\ 20\%\ CF_4+10\%\ CO_2} \\ 6.6\ (@\ 3\ kV/cm)\ ;\ 4.5\ @\ 1.6\ kV/cm \\ {\rm TOT\ (2\ threshold\ values)} \\ 100 \\ <4\%\ (p<100\ {\rm GeV/c};\ B=2\ T) \\ 1.5\ /\ 17\ /\ 10\% \\ 10\ {\rm years} \end{array}$

Is it possible to realize a cross breeding?

(... hopefully getting a high-rate and high-granularity and NOT a low-rate and low-granularity!)

owards high-granularity straws

Segmented wires: NIM A425 (1999) 75

Pickup pad readout: NIM A427 (1999) 465

✓ ATLAS,PHENIX

wbacks: - dead zones (~ 1 cm, @ wire joints) - tedious manufacturing

To minimize noise and cross-talk the electronics has to be local (like ALICE TRD)

Summary

- Both high-granularity and high-rate TRDs have demonstrated concepts (large scale)
- A hybrid is possible in principle, but is not straightforward in practice
- Detailed optimizations are needed (to find the best compromise)
 - pion rejection using TR (or $\pi/K/p$ identification via dE/dx)
 - position resolution (matching, tracking)
- As always, mechanical realization and price constraints will impose additional compromises