

Hyperon measurement with Silicon Pixel Detectors in Pb-Pb collisions

Vito Manzari (INFN Bari, Italy)

http://na57.web.cern.ch/NA57

- Physics goals
- Experimental apparatus
- Data sets
 - 40 GeV status
 - 160 GeV status
- Summary and Conclusions
- Future Plans

The NA57 Collaboration

- Dipartimento I.A. di Fisica dell'Univ. e del Politecnico di Bari and Sezione INFN, Bari, Italy
- Fysisk institutt, Universitetet i Bergen, Bergen, Norway
- Høgskolen i Bergen, Bergen, Norway
- School of Physics and Astronomy, University of Birmingham, Birmingham, UK
- Comenius University, Bratislava, Slovakia
- · Dipartimento di Fisica dell'Università and Sezione INFN, Catania, Italy
- CERN, European Laboratory for Particle Physics, Geneva, Switzerland
- Institute of Experimental Physics SAS, Kosice, Slovakia
- P.J. Safárik University, Kosice, Slovakia
- Fysisk institutt, Universitetet i Oslo, Oslo, Norway
- Dipartimento di Fisica dell'Università and Sezione INFN, Padua, Italy
- Collège de France and IN2P3, Paris, France
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Dipartimento di Fisica dell'Università "La Sapienza" and Sezione INFN, Rome, Italy
- Dipartimento di Fisica dell'Università "E.R. Caianiello" and Sezione INFN, Salerno, Italy
- State University of St. Petersburg, St. Petersburg, Russia
- Insitut de Recherches Subatomiques, IN2P3/ULP, Strasbourg, France
- Utrecht University and NIKHEF, Utrecht, The Netherlands

Strangeness Enhancement in A-A w.r.t. p-p and p-A as a QGP signature:

- proposed by Rafelski and Müller, 1982
- The QGP strangeness abundance is enhanced (partial restoration of chiral simmetry, gluon-gluon fusion, "Pauli blocking")
- As the QGP cools down, eventually the quarks recombine into hadrons ("hadronization")
- The abundance of strange hadrons should also be enhanced
- Enhancement larger for particles of higher strangeness content, e.g.:

 $En(\Omega) > En(\Xi) > En(\Lambda)$ (sss) (ssd) (sud) $|S| = 3 \quad |S| = 2 \quad |S| = 1$

- Physics: Strangeness production in Pb-Pb collisions at central rapidity $(|y_{CM}| < 0.5)$
- Apparatus: High granularity detectors —> Si pixel planes
 Analysis:
 - Reconstruction of strange particle decays
 - Study of
 - transverse mass distribution dN/a

$$dN/dm_{T} \equiv \int_{-0.5}^{0.5} dy dN/dm_{T} dy$$

- particle yields $yields \equiv \int dm_T \int dy dN / dm_T dy$
- yields vs nucleon participating to the collision (wounded nucleons)

 \checkmark Λ, Ξ, Ω and K⁰_S + anti-particles by reconstructing weak decay topologies 5 cm

• The long lifetime of these weakly decaying particles allows to separate the secondary decay products from the much more numerous primary collision products, drastically reducing the combinatorial backgrounds e.g.:

- Particle selection criteria are based on geometrical cuts, e.g.:
 - $p-\pi$ closest approach in space
 - V⁰ candidates combined with a 3rd track $\rightarrow \Xi/\Omega$ candidates
 - Ξ/Ω decay distance, Λ decay distance
 - π and Λ vs Ξ impact parameters at the target plane

In order to correct for acceptance and efficiency losses, a weight is associated with each hyperon in the final sample

The weights are calculated by Monte Carlo:

- generated hyperons are traced through a GEANT simulation of the NA57 apparatus (chip-by-chip detector efficiencies)
- the hits are merged with true events
- the result is sent through the standard NA57 reconstruction and analysis chain

The NA57 experimental apparatus

♦ The Omega3 pixel ladder:

NA57 Silicon Pixel Plane

• 4 ladders mounted on a ceramic \rightarrow array

2 arrays mounted face-to-face and staggered by ≈ 4 mm to cover dead areas \rightarrow (logical) plane, $\approx 5x5$ cm², 8 ladders, ≈ 98 K sensor elements

Thin ceramic

WA97 results

strangeness enhancement in Pb-Pb w.r.t. p-A increases with strangeness —> QGP prediction

WA97 Pb-Pb at 160 A GeV/c

(J. Phys. G: Nucl. Part. Phys. 27 (2001) 375-

No current hadronic microscopic model predicts such a behaviour
 All these features fulfill the predictions of a QGP scenario

NA57 physics goals & Data sets

 \bigvee NA57 searches for the onset of the enhancements:

• Strangeness enhancement pattern at variation of beam energy

- Lower beam momentum from 160 to 40 A GeV/c [√s (40 GeV/c) ~ 1/2 √s (160 GeV/c)] → is strange baryon production still enhanced? by how much?
- Extend centrality range down to $N_{wound} \sim 50$ in Pb-Pb at 160 A GeV/c

System	Beam	Sample size	Data taking	Reconstruction
	momentum		completed	completed
Pb Pb	160 A GeV/c	230 M events	November 1998	February 2000
p Be	40 GeV/c	60 M events	July 1999	July 2000
Pb Pb	40 A GeV/c	290 M events	November 1999	January 2001
Pb Pb	160 A GeV/c	230 M events	October 2000	December 2001
p Be	40 GeV/c	110 M events	September 2001	Summer 2002 (exp.)

- Centrality selection —> charged part. multiplicity (MSD)
- N_{wound} from Xsections for each class (Glauber model)
- NA57: most peripheral bin $--> < N_{wound} > = 62$

Pb-Pb 40 A GeV/c data set

uncorrected $\overline{\Lambda}/\Lambda = 0.023 \pm .001$

 \searrow Next step: absolute values of yields and enhancements for Λ and Ξ

Pb-Pb 160 A GeV/c data set

Aim: extend centrality range of WA97 measurements

 started with Ξ⁻ & Ξ⁺: statistics large enough to study the centrality dependence down to N_{wound} ~ 50

Ξ

Ξ

Λ

Λ

321 ±23

 287 ± 6

 284 ± 6

 284 ± 17

 289 ± 3

 287 ± 4

m_T distributions & inverse slopes

- NA57 inverse slopes compatible with those measured by WA97
- Compatible for particles and antiparticles

- $\Xi^-, \overline{\Xi}^+$ results are very stable
- NA57 systematics well under control
- checks of Λ analysis chain are being completed (Λ , $\overline{\Lambda}$ preliminary)

The drop is not due to the corrections for acceptance & efficiency nor to the extrapolation to $p_T = 0$

NA57 confirms enhancement pattern observed by WA97

- NA57 Ξ and Λ absolute yields systematically larger than those of WA97 by up ~ 20%
- Significant change of behaviour of $\overline{\Xi}^+$ enhancement in most peripheral class

 \checkmark Yield per N
wound rises from <N
wound > = 62 ---> 121 bothfor Ξ^- and for $\overline{\Xi}^+$:2.6 for $\overline{\Xi}^+$ (3.5 σ effect)

Steep onset of enhancement?

Antihyperon-to-hyperon ratios:

	Pb-Pb		p-Be	
	40 A GeV/c	160 A GeV/c	40 GeV/c	160 GeV/c
$\overline{\Lambda}/\Lambda$	0.023 ± 0.001	0.133 ± 0.007	0.059 ± 0.007	0.332 ± 0.008
$\overline{\Xi}^+/\Xi^-$	0.080 ± 0.025	0.249 ± 0.019	N/A	0.45 ± 0.07

(40 GeV p-Be: only 1999 data, data taking completed in 2001)

- Silicon pixel detector successfully employed as tracking device in high multiplicity environment such as Pb-Pb collisions at SPS energy.
- A new generation of rad-hard silicon pixel detector has been developed for the ALICE (and LHCb) experiment at LHC.
- \swarrow @ 40 A GeV/c: decrease of \overline{Y}/Y w.r.t. 160 A GeV/c Pb-Pb & p-Be
 - 160 GeV \rightarrow 40 GeV: $\overline{\Lambda}/\Lambda$ decreases by ≈ 6 ; $\overline{\Xi}^+/\Xi^-$ decreases by ≈ 3
 - need analysis of full p-Be reference data set to measure enhancements
- - Yields/participant step increase for <N_{wound}> = 62 → 121 both for Ξ⁻ and Ξ⁺
 Ξ⁺ by a factor 2.6 (3.5 s effect)
 - $\Lambda(\overline{\Lambda})$ preliminary yields suggest similar behaviour with centrality

- ♦ @ 160 A GeV/c: the enhancement is larger for particles of higher strangeness content, e.g.: En(Ω) > En (Ξ) > En (Λ), up to a factor ≈15 for Ω (WA97 result).
- ♦ More results to come both at 160 and 40 A GeV/c, e.g.: Ω^- and $\overline{\Omega}^+$ in Pb-Pb at 160 A GeV/c from NA57

→ next Quark Matter, July 2002

Indication of onset of enhancements warrants further investigation of the transition region

- Steep onset of $\overline{\Xi}^+$ enhancement for $N_{wound} > 100 \rightarrow \text{onset of}$ deconfinement?
- Since a Pb-Pb collision with $N_{wound} < 100$ is rather peripheral, it would be important to cross-check the effect with a lighter system.

For N_{wound} = 100:

$$b/R \approx 1.3 \text{ (Pb-Pb)}$$

 $b/R \approx 1 \text{ (In-In)}$

Expose existing NA57 apparatus to In or Sn beam in 2003