

G. Chanfray

COMPRESSED BARYONIC MATTER

Hadrons in dense and hot matter

and Chiral Symmetry Restoration

• High baryonic density matter

- From the high density side : color superconducting phase (di-quark condensation))

From the low density side : nucleonic (baryonic) matter (three-quark clustering), role of chiral symmetry (restoration) and color confinement implemented in effective theories

In medium hadronic spectral functions
 The rho meson and the axial-vector mixing : dilepton production

Fluctuations of the quark condensate : in-medium scalar-isoscalar modes

I. HADRONS IN MEDIUM

Observable consequences of in-medium chiral dynamics

- Order parameter at finite ρ_B, T
 - Dropping of the quark condensate

$$R = \frac{\langle \langle \bar{q}q \rangle \rangle(\rho_B, T)}{\langle \bar{q}q \rangle_{vac}} = 1 - \sum_{h} \frac{\rho_h \Sigma_h}{f_\pi^2 m_\pi^2} + higherorder$$

In-medium hadronic spectral functions

• Evolution of the "centroids" (masses)

No universal link between condensate and observable evolutions (masses, f_{π} , etc...)

• Shape of the hadronic spectral functions

Softening/sharpening (σ) or broadening (K, ρ) Relation with χ SR?

Simultaneous study of "chiral partners"

Vector $(\rho) \leftarrow \rightarrow$ Axial (a_1)

$$\mathcal{V}_k^\mu = \bar{q} \, \gamma^\mu \, rac{ au_k}{2} \, q, \quad \longleftrightarrow \quad \mathcal{A}_k^\mu = \bar{q} \, \gamma^\mu \, \gamma_5 \, rac{ au_k}{2} \, q$$

II. DILEPTON PRODUCTION

• Dilepton production rate from hot and dense matter

$$rac{dN_{lar{l}}}{d^4x d^4q} = -rac{lpha^2}{6\pi^3 M^2} rac{1}{e^{eta q^0} - 1} g_{\mu
u} \left(egin{array}{c} 1 \ \pi \ Im \Pi_V^{\mu
u} \end{array}
ight)$$

Current-current correlator in the vector channel

$$\Pi_V^{\mu
u}(q) = -i\int d^4x \, e^{-iqx} \, \langle \langle \mathcal{V}^\mu(x), \mathcal{V}^
u(0)
angle
angle(T,
ho_B)$$

Broadening and flatening of the rho meson spectral fonction

Lowering of the quark-hadron duality threshold \iff radiation from a chiral symmetry restored phase

• Theoretical ideas and approaches

Density expansion, many-body approaches, transport codes.

QCD sum rules, Weinberg sum rules,..

Dropping masses vs chiral partner mixing

II. DILEPTON PRODUCTION

• Many-body approaches

Effective hadronic theories : VDM + χ S + phenomenology (πN , ρN , photoabsorption, decay rates,...)

Coupling of the ρ to many-body excitations

• TEMPERATURE EFFECTS : meson gas (Rapp-Gale)

$$\pi \rho \leftrightarrow \omega a_1 \qquad Ch.SR$$

• BARYONIC EFFECTS (Rapp-Wambach, GC et al, Friman et al, Peters et al)

Dominant S wave (q=0) $N_{13}^*(1520)$: Strong medium effect

II. DILEPTON PRODUCTION

• Brodening and flatening dominated by baryonic effects

• Stronger effect at lower SPS energy *i.e.* higher baryonic density

• (Partial) Connection with (partial) chiral symmetry restoration : mixing of vector and axial correlators : Linked to the pionic part of the in-medium chiral condensate

• What is the chiral status of the $N^*(1520)$? Linked to a nucleon structure problem

• High baryonic density matter

One central question : in-medium behaviour of scalarisoscalar modes?

• Order parameter $\mathcal{M}^{ij} \quad \psi^j_R \psi^i_L$

 $\langle \mathcal{M}^{ij} \rangle \neq 0 \qquad \mathcal{M} \to V_L \, \mathcal{M} \, V_R^{\dagger}$

$$\mathcal{M} = \left(\frac{\bar{\psi}\,\psi}{2}\right) + i\vec{\tau} \cdot \left(i\,\bar{\psi}\,\gamma_5\,\frac{\vec{\tau}}{2}\,\psi\right) \qquad \sigma + i\vec{\tau}\cdot\vec{\pi}$$

• σ meson : amplitude fluctuation of the condensate

• pion phase fluctuation of the condensate

But $\sigma \to \pi \pi$ Large σ width

• In-medium " σ meson"

• Chiral symmetry restoration : softening (hardening) of the spectral function (dropping of the sigma mass and chiral condensate)

- Coupling of the sigma to in-medium $\pi\pi$: softening
- Role of the nucleonic polarization or confinement?

Chiral effective theory

NJL type : $M \sim -2 G \langle \langle \bar{q}q \rangle \rangle(\rho, T)$ Hadronic theories : $\langle \langle \sigma \rangle \rangle \sim \langle \langle \bar{q}q \rangle \rangle(\rho, T)$

Alternative : $\sigma + i \tau \cdot \vec{\pi} = \Theta U$ $(\theta + f_{\pi}) e^{i \tau \cdot \vec{\phi}_{\pi}}$

- $\vec{\phi}$ New pion field : orthoradial soft mode
- $\bullet \theta$ is chiral invariant : fluctuation of the chiral radius to be identified with the "sigma meson" of the Walecka model

Manifestations of χS Restauration

- Pionic fluctuations \iff Axial-vector mixing
- Scalar field $(\Theta) \iff$ Dropping of the masses

In-medium spectral function or $T_{\pi\pi}^{I=J=0}$

• In-medium $\sigma\pi\pi$

Coupling of the sigma (with vacuum mass and couplings) to dressed pions

 σ pole in the complex plan moves at lower energies with a reduced width (Oset et al) \rightarrow Shift of the the invariant mass spectrum in $A(\gamma, \pi^0 \pi^0)$ observed by the TAPS collaboration

• Chiral symmetry restoration

Softening (and sharpening) of a collective scalar-isoscalar mode i.e. the particle representing the amplitude fluctuation of the order parameter around the minimum of the effective potential

Precursor effect of χ SR : Sharp structure near the 2π threshold in σ and $\pi\pi$ strength function at ρ_d such that :

 $m_{\sigma} = 2 m_{\pi}$ (Hatsuda et al)

• Model calculation : In-medium $T_{\pi\pi}$ (Linear sigma model (NJL), $\pi\pi$ phase shifts)

Four-quark condensate $\langle 0|(\bar{q}q)^2|0\rangle = \langle 0|\bar{q}q|0\rangle \langle 0|\bar{q}q|0\rangle + \sum_n \langle 0|\bar{q}q|n\rangle \langle n|(\bar{q}q)|0\rangle$ $|n = 2\pi$ scalar-isoscalar modes e σ mesor

• Model calculation

Effective linear sigma model with in-medium modified couplings $(m_{\sigma}, f_{\pi}, m_{\pi})$ from chiral symmetry restoration (NJL)

Unitarization : $\pi\pi$ loop with pion p-wave dressing from nuclear physics i.e. $\Delta - h$

$$\begin{split} \kappa_2(\rho) \ &= \ \frac{\langle (\bar{q}q)^2 \rangle(\rho)}{\langle \bar{q}q \rangle \rangle^2(\rho)} = 1 \\ &+ \ \frac{1}{f_{\pi}^2(\rho)} \int_0^{\Lambda_P} \frac{d\mathbf{P}}{(2\pi)^3} \int_0^{\infty} dE \ \left(\frac{-1}{\pi}\right) Im D_{\sigma}(E,\mathbf{P}) \end{split}$$

$ ho/ ho_0$	m_{σ}	m_{π}	f_{π}	$\Delta \kappa_2$
()	1000		93	0
0.5	890	140.3	87	0.33
1	795	143.1	79	0.88
1.5	649	148.7	69	1.39
2	510	161	56	3.74

Matter stability in chiral theories Energy density of dense nuclear matter

$$\epsilon(\rho,\sigma) = \sum_{p < p_F} \sqrt{(p^2 + M_N^*(\langle \sigma \rangle))} + V(\langle \sigma \rangle) + C_V \rho^2$$

• NJL (Bentz, Thomas, Birse) : Nucleon = diquark-quark state. $M_q=g_q\left<\sigma\right>$

• Chiral relativistic theories : $\sigma = \Theta \equiv$ chiral invariant scalar field. $M_N^* = g \langle \Theta \rangle$

NO STABILITY

Decrease of the curvature of the effective potential when $\langle \sigma \rangle$ drops

A sizeable $\frac{\partial^2 M_N}{\partial \sigma^2}$ can stabilize the matter

NEED OF CONFINEMENT EFFECT

 $NJL: Infrared\ cutoff$

 ${\rm QMC}: {\rm Polarization}$ of the nucleon : Influence of the scalar field on the confined quark wave functions

Model calculation

 $\mathcal{H} = N^{\dagger} \left(-i \vec{\alpha} \cdot \nabla + \beta M_N \left(1 + \frac{\theta}{f_{\pi}} + C \frac{\theta^2}{f_{\pi}^2} \right) \right) N$ $+ \frac{m_{\theta}^2}{8 f_{\pi}^2} \left(\left(\theta + f_{\pi} \right)^2 - \frac{f_{\pi}^2}{f_{\pi}^2} \right)^2 + g_{\omega} \omega N^{\dagger} N - \frac{1}{2} m_{\omega}^2 \omega^2$

 $g_{\theta NN} = M_N / f_\pi \simeq 10, \qquad m_\theta \simeq 800 \, MeV$ Extra θ^3 , θ^4 terms constrained by chiral symmetry *i.e.* from the Mexican hat potential. $C \simeq 1$: Nucleon polarization (QMC model) needed!

Short range repulsion : $g_{\omega}^2/m_{\omega}^2$: $m_{\omega} \simeq 780 \, MeV$, $g_{\omega} \simeq 6$

• In-medium sigma mass

$$m_{\sigma}^{*2} = \frac{\partial^2 \epsilon}{\partial \Theta^2}$$

"Confining" term : $\frac{\theta^2}{f_{\pi}^2} + \frac{1}{3} \frac{\theta^3}{f_{\pi}^3}$ $m_{\sigma} = 750 \, MeV, \quad g_{\omega} = 6.8$

Very weak density dependence : "confinement" compensates chiral dropping

The scalar susceptibility (scalar quark density fluctuations) $\chi_S \sim 1/m_{\sigma}^{*2}$ does not increase but seems to saturate in the range $2 - 3 \rho_0$

• $\pi\pi$ Strength function : Parameter set 1

Main effect : Dropping of the condensate

$$\lambda_{\sigma\pi\pi} = rac{m_{\sigma}^{st 2} m_{\pi}^2}{\langle \Theta
angle}$$

IV. SCALAR SUSCEPTIBILITY

Scalar susceptibility

Define the Scalar susceptibility from the scalar correlator i.e. the correlator of the scalar quark density fluctuations :

$$\chi_s = \frac{\partial \langle \langle \bar{q} \, q \rangle \rangle}{\partial m} = \int dt \, d\vec{r} \, \langle \langle \delta \, \bar{q} \, q(0,0), \, \delta \, \bar{q} \, q(\vec{r},t) \rangle \rangle$$
$$\delta \, \bar{q} \, q(\vec{r},t) = \bar{q} \, q(\vec{r},t) - \langle \bar{q} \, q \rangle$$

• Thermal susceptibility (from lattice, Karsch et al)

• Near the phase transition the scalar susceptibility (fluctuations of the order parameter) becomes large

 \bullet Above the critical point : degeneracy between the chiral partners π and σ

SCALAR SUSCEPTIBILITY

Finite density susceptibilities (M

$$\rightarrow \quad \frac{\langle \bar{q} q \rangle_{vac}}{f_{\pi}} \sigma(\vec{r},$$

$$\bar{q} i \gamma_5 \frac{\vec{\tau}}{2} q(\vec{r}, t) \quad \rightarrow \quad \frac{\langle \bar{q} q \rangle_{vac}}{f_{\pi}} \vec{\Phi}(\vec{r}, t)$$

- Scalar susceptibility
- Quark density fluctuations carried by the scalar field σ

$$\chi_{S} = \frac{\langle \bar{q} \, q \rangle_{vac}^{2}}{\frac{f^{2}}{f^{2}}} \int dt \, d\vec{r} \, \langle \langle \delta \sigma(0,0), \, \delta \sigma(\vec{r},t) \rangle \rangle$$

$$\chi_S = \frac{\langle \bar{q} q \rangle_{vac}^2}{r^2} \operatorname{Re} D_{\sigma}(\omega \quad 0, \mathbf{q} = 0)$$

- Sharp (in-medium) sigma $D_{\sigma}(r) = e^{-m_{\sigma}^* r}/r \rightarrow \chi_S \sim 1 m_{\sigma}^{*2}$ infinite range fluctuations
- Scalar density fluctuations transmitted by the sigma meson, relayed by the nucleons *i.e.* coupling to NN^{-1} . \iff increase the range of the fluctuations

$$D_{\sigma} = D_{\sigma}^{0} + D_{\sigma}^{0} \prod_{SS} D_{\sigma}^{0}$$
$$D_{\sigma} = D_{\sigma}^{0} \left(1 + \frac{g_{S}^{2}}{m_{\sigma}^{2}} \frac{9}{K}\right)_{\rho = \rho_{0}}$$

IV. SCALAR SUSCEPTIBILITY

• Model calculation

$$D_{\sigma} = D_{\sigma}^{0} rac{m_{\sigma}^{2}}{m_{\sigma}^{*2}} \left(1 + rac{g_{S}^{*2}}{m_{\sigma}^{*2}} \Pi(0,0)
ight)$$

$$\Pi(0,0) \quad \frac{\left(-2\,M_N^*\,k_F/\pi^2\right)}{1-\left(\frac{g_V^2}{m_V^2}-\frac{g_S^{*2}}{m_\sigma^{*2}}\right)\,\left(-2\,M_N^*\,k_F/\pi^2\right)}$$

• Dilepton production : Broadening of the vector meson spectral function driven by baryonic effect. Connection to chiral restoration only partially understood

• Study of high baryonic density matter : Need for a consistent description incorporating :

In-medium chiral dynamics (coupling to the condensate)

baryon (nucleon) structure and confinement

• Support from lattice at finite density (spectral functions, susceptibilities,..)