

Compressed Baryonic Matter

A heavy-ion experiment at the future facility at GSI

GSI Darmstadt : A. Andronic, P. Braun-Munzinger, C. Finck, B. Friman, C. Finck, R. Holzmann, W. Koenig, M. Lutz, P. Senger, Y. Shin, R. Simon, J. Stroth

Universität Frankfurt : H. Ströbele

Universität Heidelberg : N. Hermann

The future facility at GSI

Baryon density in heavy-ion collisions at SIS200

The phase diagram of strongly interacting matter

What can we expect?

➤The future facility at GSI will deliver heavy-ion beams from 2 to 30 AGeV (maybe more)

➢In heavy-ion collisions at such beam energies, extreme baryon densities are expected

➢ This gives the opportunity to study the region of dense baryonic medium in the QCD phase diagram, maybe even in the vicinity of the critical point

≻Clearly, penetrating probes such as dipletons are needed

What do we know : In-medium modification of vector mesons

What do we know : In-medium modification of vector mesons

 At SPS, an excess of low-mass dipletons is observed

- The effect is stronger at 40 AGeV than at top SPS energy
- It is already seen at BEVALAC (1 AGeV)

 The interpretation seems to require a modified rho-meson

 The present data do not allow to distinguish between various in-medium scenarios

 There is need for a high-precision dilepton measurement

What do we know : Threshold production of strangeness / charm

What do we know : Threshold production of strangeness / charm

 The threshold production of kaons is sensitive to the in-medium modifications of the kaon masses

This has been shown at SIS18 (KaoS and FOPI)

A similar effect is expected for open charm

 D mesons have not been measured in heavyion collisions so far

What do we know : J/Ψ suppression

SPS (NA50)

- At top SPS energy, an anomalous suppression of J/Ψ is observed

 Such a suppression is expected for a deconfined phase due to colour screening

 This is one of the evidences that the phase transition is reached at SPS

- Is there an onset of this effect with collision energy?
- No measurement below SPS energies up tp now

What do we know : Strangeness enhancement

Maximum in relative strangeness production observed for kaons around 30 AGeV

Interpretation is still under debate

What do we know : Strangeness enhancement

Interpretations:

Maximum is due to change in baryochemical potential (hadron gas model) or due to phase transition (statistical model of the early stage)

• The region around 30 AGeV is of special interest

 The measurement of multi-strange hyperons would be informative

What do we know : Event-by-event fluctuations

- In the vicinity of the critical point, large fluctuations,
 e.g. in mean pt or chemical composition are expected
- Such fluctuations would be a direct proof of a phase transition
- At SPS, no non-statistial fluctuations are observed
- Looking for the critical point in the range 10 30 AGeV

What would we like to measure ?

- $\rho \rightarrow e$ + e- with high precision
- J/ $\Psi \rightarrow$ e+ e-
- $D \rightarrow \pi K$
- π, K, p direct
- Λ , Ξ , Ω via topology
- event-by-event variables

What do we need ?

- high beam intensities (10⁹ / s) and reaction rates (up to 10 MHz)
- large acceptance (>2 π)
- trigger for rare probes

All detector components have to deal with high reaction rates (fast readout, radiation hardness, high granularity)

Experimental conditions

URQMD Au+Au @ 25 AGeV GEANT simulation: B = 1 T

π^+	328
π -	357
р	161
K+	41
K-	13
Σ-	9
Σ^+	8

700 – 1000 charged particles per event

Experimental task:

- determination of momentum
- measurement of displaced vertex (D meson)

Requirements:

- o operation in magnetic field
- o close to target
- o radiation hardness
- o high granularity
- o minimal thickness

A possible solution: Silicon pixel / strip detectors

Acceptance for the tracking system

UrQMD Au+Au @ 25 AGeV + GEANT

Experimental task: Hadron PID

- separation of π, K, p
- method : time of flight

Requirements:

- o distance from target 10 15 m
- o large area to cover
- o resolution < 100 ps
- o high rate capability

Possible solutions: Resistive plate counters ? Scintillators ?

Experimental task: Lepton PID

- Dilepton measurement requires separation of e from π

Requirements:

- o suppression factor < 10⁻⁴
- o high electron efficiency

Possible solution: 1. stageRICH 2. stage

TRD (ALICE type)

J/Ψ Detection

PLUTO + GEANT simulation, 10 M events

J/Ψ Detection

PLUTO + GEANT simulation, 10 M events

signal / background ≈ 10 estimated detection rate : 80,000 / week

A possible detector concept

Summary

□ The future facility at GSI will provide heavy-ion beams from 10-30 AGeV.

□ A dedicated heavy-ion experiment will allow to study the (largely unknown) high μ_B region of the QCD phase diagram.

■ The physics questions that can be adressed are chiral symmetry restauration (vector meson properties), phase transition (J/Ψ, strangeness) and the critical point (fluctuations).

□ The experiment should measure dileptonic decays of ρ , ω , J/ Ψ with high precision, weak decays of multistrange hyperons, displaced vertices of D mesons as well as p, π , K.

These observables should be studied as a function of beam momentum and impact parameter.

A first, schematic detector concept includes a silicon tracking system, a RICH, a TRD and a TOF-Wall.

□ The experimental challenge will be to deal with unprecedented high beam intensities / reaction rates that are needed for rare probes.