The ATLAS Hybrid Silicon Pixel Detector

Peter Fischer

Universität Bonn

The ATLAS Pixel Detektor

- Modules, mechanics etc.
- The silicon sensor
- The front end electronics

Why Pixels ?

Survive high radiation level

P need very low noise

• Note: Strip detectors have better resolution & shorter radiation length!

Hybrid Pixel detectors

- Every pixel is connected to a separate amplifier on the readout chip
- Low input C ⇒ low noise ⇒ low threshold ⇒ can operate with thin detectors and small signals after irradiation ⇒ intrinsic radiation hardness

Requirements for the ATLAS pixel detector

 Pixel Size 	50 x 400 µm ²	(as small as possible, limit is power)
 Typical Signal Threshold Noise Threshold dispersion Leakage current tolerance 	1fC = 6000 electrons 2000 electrons 200 electrons 200 electrons 100nA / pixel	(mip in 300µm silicon in pixel corner) (quite a bit smaller than signal) (quite a bit smaller than the threshold) (not larger than the noise) (probably more than we need)
SpeedData storage	25ns timing precision up to 160 clock cycles	(bunch crossing of LHC, 'time walk') (level 1 latency)
 Radiation Tolerance 	50 Mrad, 10 ¹⁵ n/cm ²	(10 years operation)
PowerMaterial	50µW / pixel ~ 1% X ₀ per layer	(including periphery, ~ 10W / Module)
 Track efficiency 	≥ 99 %	(including gaps between sensors)
 Many channels 	10 ⁸	(must have zero suppression)

The ATLAS Pixel Detektor

Why pixels - Introduction

The pixel detector

- Modules, mechanics etc.
- The sensor
- The front end electronics

Some results

Status of the project

The ,flex' Module

Flex capton solution:

- Connections between FE-Chips, module control chip, other components and cable through a thin capton PCB
- Size = 16.4 × 60.8 mm²
- 16 chips with ~ 50000 pixels total
- ~ 2000 modules needed
- Material:
 - silicon sensor 0.22 %
 - chips thinned to 200 μm $\,$ 0.14 %
 - bumps, bonds, glue,... 0.10 %
 - support, cooling, caps,... 0.90 %

<u>1.4 – 1.8 %</u>

Total:

1st generation: ,bare' module on rigid support

2nd generation: flex module in mounting frame

Overall layout

- Global support is a flat panel structure
- Made from carbon composite material (IVW, Kaiserslautern)
- Total weight is 4.4kg
- 3 pieces, center part consists of two half-shells to open

Cooling

Is very important

- Contributes significantly to material budget
- Limits the power / performance of electronics
- Detectors must stay below -6° C to limit damage from irradiation (see later)
- ATLAS uses evaporative cooling:
 - Cooling by evaporation of fluorinert liquid (C_4F_{10} or C_3F_8) @ -20°C. Needs pumping.
 - Low mass (gas!)
 - small diameter tubes (only small pressure drops)
 - Very large cooling capacity
 - Aluminum tubes must withstand 6 atm if pumping stops and coolant develops its full vapor pressure.
- All components must cope with thermal cycling $25^{\circ}C \Leftrightarrow -20^{\circ}C$

Barrels and staves

- Barrels are made from parallel staves
- One stave contains 13 modules which are shingled for overlap in z

Barrels and staves

- Stave is a carbon structure with an AI tube for cooling
- Staves are tilted for overlap in phi (+change sharing)
- Production mainly in Germany, Italy, France

Disks and Sectors

- Disks are divided into sectors
- Coolant flows in tube between two C-C facings
- Modules are arranged on both sides for overlap
- Production in USA

cooling test of full disk (@ LBNL)

The MCMD module concept

MCMD module:

- Capton is replaced by multi-layer structure deposited onto the sensor
- Very compact module, no wire bonds, all pixels can have same size!
- Slightly more material (,balcony')
- First working module had excellent performance

CBM, GSI Darmstadt 14.5.2002, P. Fischer

MCMD technology

- Production at Frauenhofer Institut IZM (Berlin), still yield problems
- Bumping with lead-tin bumps at IZM
- Very interesting concept for many future applications!

The ATLAS Pixel Detektor

Why pixels - Introduction

The pixel detector

Modules, mechanics etc.

- The sensor
- The front end electronics

Some results

Status of the project

Radiation damage of silicon sensors

- Irradiation of silicon leads to bulk damage and oxide charges at the surface
- Bulk damage:
 - increased i_{leak}
- \rightarrow increased noise

 \rightarrow n-side readout

- ,reverse annealing' \rightarrow keep sensor cold (- 6^oC)
- Type inversion
- Change in doping
- Oxide charges:
- \rightarrow increased depletion voltage (guard rings!) , partial depletion
- increased field strength \rightarrow special designs

Problem of type inversion

ATLAS pixel sensor production has started

Performance of irradiated sensor

- Sensors are irradiated to full ATLAS fluence (10¹⁵ n_{eq}/cm²)
- They are then bump bonded to rad-soft ATLAS Prototype FE-Chips
- Measurements are performed in test beam with a Si-Strip telescope as reference detector
- Pixel Chips give some information about collected charge.

RESULTS

- V_{bias} > 600V possible
- Homogenous charge collection also in pixel corners
- 98.4% track efficiency
- These sensors will survive 10 years of ATLAS operation

The ATLAS Pixel Detektor

Why pixels - Introduction

The pixel detector

- Modules, mechanics etc.
- The sensor
- The front end electronics

Some results

Status of the project

Electronic Components of the Pixel System

The Front End Chip

- Chip size: 7.4mm x 11mm
- Pixels: 18 x 160 = 2880
- Pixel size: 50µm x 400µm
- Technologies: 0.8µm CMOS (FEA,FEB)
 0.8µm BiCMOS (FED)
 0.25µm CMOS (FEI)
- Operates at 40 MHz
- Zero suppression in every pixel
- Data is buffered until trigger arrives
- Serial control and readout, LVDS IO
- Analog part with
 - 40 μW power dissipation / Pixel
 - ~200 e noise
 - Amplitude measured via pulse width

Pixel Analog Part

Different injected charges

Different feedback currents

(Measured on FED test chip with internal chopper, no sensor)

Data Readout

4 simultaneous tasks are running permanently:

- A time stamp (7bit Gray Code) is distributed to all pixels
- When a pixel is hit, the time of rising and trailing edges are stored in the pixel
- The hit is flagged to the periphery with a fast asynchronous scan
- Time information and pixel number are written into a buffer pool (common to a column pair)
- The hit in the pixel is cleared
- If a trigger arrives, the time of the hit (leading edge data) is compared to the time for hits associated to this trigger. Valid hits are flagged, older hits are deleted.
- The trigger is queued in a FIFO
- All valid hits of a trigger are sent out serially. All triggers in the FIFO are processed.

FEI design: from 0.8µm DMILL to rad hard 0.25µm

CBM, GSI Darmstadt 14.5.2002, P. Fischer

The ATLAS Pixel Detektor

Why pixels - Introduction

The pixel detector

- Modules, mechanics etc.
- The sensor
- The front end electronics

Son Son

Some results

Status of the project

Results of single chip & module prototypes

Threshold adjustment on a single chip

- Trim range can be selected to find best compromise between dynamic range and resolution
- Situation is much better in FEI with 5 trim bits !

Module thresholds & noise

Source measurement with ⁵⁵Fe

- ⁵⁵Fe-source (6keV γ) deposits only 1700 e⁻h-pairs
- FE-C chip with thresholds tuned to ~1200 e⁻
- Some bump problems at edge (one of the first assemblies)
- The chip can be operated at very low threshold

Edge sensors are longer (600 μ m) \Rightarrow higher count rate

Source measurement on a module with ²⁴¹Am

- Spot of ²⁴¹Am-source on two neighboring chips of a module
- Module without MCC: chips were illuminated one after the other

spatial resolution in test beam

Time Walk

- Detector is a capacitive load
 - \Rightarrow preamplifier has slow rise time (limited by power!)
 - \Rightarrow hits only slightly above threshold fire discriminator later

- This is one of our biggest problems. Must still check performance of FEI.
- Possible improvements: digital correction (FEI), zero crossing

Track Efficiency

- Despite marginal time walk, efficiency is ok after irradiation !
- Here: Sensor is moderate p-spray with bias grid. Chip threshold is 3000 e⁻

Depletion Depth after irradiation

ATLAS pixel: Status

- sensors are very mature & are ordered
- FEI radiation hard electronics (0.25µm): performance is good, radiation hardness has been confirmed
- bump bonding: process matured over 4 years
- all module production steps are established
- staves, disks and global support are being produced
- Further development is needed for
 - cables for power & signals
 - connections at module, patch panels etc.
 - signal transmission ICs