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Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The silicon sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor
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Why Pixels ?

§ Avoid ambiguities (‚ghost hits‘) at high multiplicities ⇒ need true 2D detector !

§ Survive high radiation level ⇒ need very low noise

§ Note: Strip detectors have better resolution & shorter radiation length!

???
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Bump pitch: 50µm
diameter: 20µm
(IZM, Berlin)

Hybrid Pixel detectors

§ Every pixel is connected to a separate amplifier on the readout chip

§ Low input C ⇒ low noise ⇒ low threshold ⇒ can operate with thin detectors and 
small signals after irradiation ⇒ intrinsic radiation hardness
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Requirements for the ATLAS pixel detector

§ Pixel Size 50 x 400 µm2 (as small as possible, limit is power)

§ Typical Signal 1fC = 6000 electrons (mip in 300µm silicon in pixel corner)
§ Threshold 2000 electrons (quite a bit smaller than signal)
§ Noise 200 electrons (quite a bit smaller than the threshold)
§ Threshold dispersion 200 electrons (not larger than the noise)
§ Leakage current tolerance 100nA / pixel (probably more than we need)

§ Speed 25ns timing precision (bunch crossing of LHC, 'time walk')
§ Data storage up to 160 clock cycles (level 1 latency)

§ Radiation Tolerance 50 Mrad, 1015 n/cm2 (10 years operation)

§ Power 50µW / pixel (including periphery, ~ 10W / Module)
§ Material ~ 1% X0 per layer

§ Track efficiency ≥ 99 % (including gaps between sensors)

§ Many channels 108 (must have zero suppression)
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Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor
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The ‚flex‘ Module

Flex capton solution:

§ Connections between FE-Chips,

module control chip, other components

and cable through a thin capton PCB

§ Size = 16.4 × 60.8 mm2

§ 16 chips with ~ 50000 pixels total
§ ~ 2000 modules needed

§ Material:
- silicon sensor 0.22 %
- chips thinned to 200 µm 0.14 %
- bumps, bonds, glue,... 0.10 %
- support, cooling, caps,... 0.90 %

Total: 1.4 – 1.8 %

FE-Chip FE-Chip

sensor
MCC

2 layer capton PCB control chip 

Wire bonds 

Larger pixels 
between chips 
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1st generation: ‚bare‘ module on rigid support

sensor

FE Chip FE Chip

ALL wire bonds
must be good!
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2nd generation: flex module in mounting frame

frame 

flex

MCC

FE chips
Stand over

viewed from chip side

viewed from flex side

FE chips

FE-Chip FE-Chip

sensor
MCC
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Overall layout

~ 1m

§ Global support is a flat panel structure
§ Made from carbon composite material

(IVW, Kaiserslautern)
§ Total weight is 4.4kg
§ 3 pieces, center part consists of two 

half-shells to open

modules modules 

3 barrels

2 x 3 disks
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Cooling

§ Is very important

- Contributes significantly to material budget

- Limits the power / performance of electronics

- Detectors must stay below –6oC to limit damage from irradiation (see later)

§ ATLAS uses evaporative cooling:

- Cooling by evaporation of fluorinert liquid (C4F10 or C3F8) @ -20oC. Needs pumping.

- Low mass (gas!)

- small diameter tubes (only small pressure drops)

- Very large cooling capacity

- Aluminum tubes must withstand 6 atm if pumping stops and coolant develops its full 
vapor pressure.

§ All components must cope with thermal cycling 25oC ⇔ -20oC
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Barrels and staves

§ Barrels are made from parallel staves
§ One stave contains 13 modules which are shingled for overlap in z
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Barrels and staves

§ Stave is a carbon structure with an Al tube for cooling
§ Staves are tilted for overlap in phi (+change sharing)
§ Production mainly in Germany, Italy, France

Al tube for
coolant

Carbon support

Shingled
(dummy) modules

Pictures are from a 
mechanical test stave
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Disks and Sectors

§ Disks are divided into sectors
§ Coolant flows in tube between two C-C facings
§ Modules are arranged on both sides for overlap
§ Production in USA

cooling test of full disk
(@ LBNL)Sector with 3

‚modules‘
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The MCMD module concept

f

connection vias

MCMD module:

§ Capton is replaced by multi-layer structure 

deposited onto the sensor

§ Very compact module, no wire bonds,

all pixels can have same size!

§ Slightly more material (‚balcony‘)

§ First working module had excellent 

performance
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MCMD technology

§ Production at Frauenhofer Institut IZM 
(Berlin), still yield problems

§ Bumping with lead-tin bumps at IZM

§ Very interesting concept for many future 
applications!

50 µm

20 µm
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Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor
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Radiation damage of silicon sensors

§ Irradiation of silicon leads to bulk damage and oxide charges at the surface
§ Bulk damage:

- increased ileak → increased noise

- ‚reverse annealing‘ → keep sensor cold (- 60C)

- Type inversion → n-side readout

- Change in doping → increased depletion voltage (guard rings!) , partial depletion

§ Oxide charges:
- increased field strength → special designs
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Problem of type inversion

p+ pixels on n- material n+ pixels on n- material

Bulk is n- before
irradiation

p- after
irradiation

Need full
depletion!

Voltage drop on
Readout side

Can be operated 
partially depleted☺L
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ATLAS pixel sensor production has started

§ n+ pixels in n- sensor
§ Multi guard ring structures hold up to 1000V
§ Isolation of pixels with moderate dose p-spray

has highest field strength BEFORE irradiation
§ Punch through dot and bias grid for testing 

before bumping
§ Use of oxygenated silicon

Bias grid

Punch through dot

Bump contact

P-sprayP-spray

Production sensor
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Performance of irradiated sensor

§ Sensors are irradiated to full
ATLAS fluence (1015 neq/cm2)
§ They are then bump bonded to

rad-soft ATLAS Prototype FE-Chips
§ Measurements are performed in

test beam with a Si-Strip telescope
as reference detector
§ Pixel Chips give some information

about collected charge.

§ Vbias > 600V possible
§ Homogenous charge collection

also in pixel corners
§ 98.4% track efficiency
§ These sensors will survive 10 years

of ATLAS operation

measured with threshold = 2000 e

RESULTS
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Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor
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Electronic Components of the Pixel System

1 Sensor
16 front end chips (FE)
1 module controller chip (MCC)
2 VCSEL driver chips (VDC)
1 PIN diode receiver (DORIC)

module control room

Optical receivers
Readout Drivers (ROD)
Readout Buffers (ROB)
Timing Control (TIM)
Slow Control, Supplies
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The Front End Chip

§ Chip size: 7.4mm x 11mm
§ Pixels: 18 x 160 = 2880
§ Pixel size: 50µm x 400µm

§ Technologies: 0.8µm CMOS (FEA,FEB)
0.8µm BiCMOS (FED)
0.25µm CMOS (FEI)

§ Operates at 40 MHz
§ Zero suppression in every pixel
§ Data is buffered until trigger arrives
§ Serial control and readout, LVDS IO

§ Analog part with
- 40 µW power dissipation / Pixel
- ~200 e noise 
- Amplitude measured via pulse width
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Pixel Analog Part

feedback uses constant current
- high stability for fast shaping
- tolerates > 100 nA leakage
- linear decay 

Analog information
- measure width of hit
- works nicely due to

linear discharge  

Individual adjustment of
- Threshold (5 bit in FEI)
- feedback current (FEI, 5 bit)
- ranges are adjustable

Sensor is
connected

here
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FED: Preamplifier Pulse Shapes

(Measured on FED test chip with internal chopper, no sensor)

Very linear discharge
⇒ good ToT

Very small
shaping loss

Different injected charges Different feedback currents

200 mV/div, 200ns/div 200 mV/div, 200ns/div

1 mip
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Data Readout

§ If a trigger arrives, the time of the hit (leading 
edge data) is compared to the time for hits 
associated to this trigger. Valid hits are flagged, 
older hits are deleted. 
§ The trigger is queued in a FIFO

§ A time stamp (7bit Gray Code) is distributed to 
all pixels
§ When a pixel is hit, the time of rising and 

trailing edges are stored in the pixel

§ The hit is flagged to the periphery with a fast 
asynchronous scan

§ Time information and pixel number are written 
into a buffer pool (common to a column pair)

§ The hit in the pixel is cleared

§ All valid hits of a trigger are sent out serially. All 
triggers in the FIFO are processed. 

4 simultaneous tasks are running permanently: 
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FEI design:  from 0.8µm DMILL to rad hard 0.25µm

Example: 8 bit DAC+Regs
full custom layout:
gain x 6 in area !

0.25µm
80x200 µm2

DMILL
500x200 µm2
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Why pixels - Introduction

The pixel detector

§ Modules, mechanics etc.

§ The sensor

§ The front end electronics

Some results

Status of the project

The ATLAS Pixel Detektor
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Results of single chip & module prototypes

Cable to
power & DAQ

LVDS IO

Single chip
with sensor

HV
(sensor bias)
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Threshold adjustment on a single chip
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Pixel

§ Trim range can be selected to find best compromise between
dynamic range and resolution
§ Situation is much better in FEI with 5 trim bits !

Threshold trim
Column structure, edge pixels! Still some bad thresholds !
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Module thresholds & noise

§ Module with 16 chips, here FEB

§ Threshold and Noise are
comparable to single chips.

§ Performance of several modules:

Module 
type 

Front-
end 

Bump Threshold 
[e] 

Noise 
[e] 

Bare FEB IZM 2000 140 
Flex FEB IZM 2000 180 
Bare FEC IZM 2500 140 
Flex FEB IZM 3000 160 
Flex FEB Alenia 3600 180 

b 

Threshold=3000 e
Sigma=170 e

Noise=160 e
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Source measurement with 55Fe

§ 55Fe-source (6keV γ) deposits

only 1700 e-h-pairs

§ FE-C chip with thresholds tuned

to ~1200 e-

§ Some bump problems at edge
(one of the first assemblies)

§ The chip can be operated at 
very low threshold

0 2 4 6 8 10 1 2 14 16
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Column

R
ow

Edge sensors are longer (600 µm)
⇒ higher count rate
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Source measurement on a module with 241Am

§ Spot of 241Am-source on two neighboring chips of a module
§ Module without MCC: chips were illuminated one after the other

5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

chip #4 chip #5

column

ro
w

Higher count rate in
600 µm long edge pixels
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spatial resolution in test beam
§ Consider short pixel dimension:

§ σ1hit = 22µm, σ2hit=5µm

§ σall = 13µm
after irradiation: 14.5µm = 50µm/√12
§ Less 2 hit clusters after irradiation
§ No improvement with analog info!

1 hit 
analog

1 hit 
digital

2 hit 
digital

2 hit
analog

Single hits
bad resolution

double hits
good resolution

50µm

error
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Time Walk

§ Detector is a capacitive load

⇒ preamplifier has slow rise time (limited by power!)

⇒ hits only slightly above threshold fire discriminator later

⇒ hit is lost if delay > 25ns

§ This is one of our biggest problems. Must still check performance of FEI.

§ Possible improvements: digital correction (FEI), zero crossing

t

Need ~1000 e- more than
threshold for in-time hit
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Track Efficiency

§ Despite marginal time walk, efficiency is ok after irradiation !

§ Here: Sensor is moderate p-spray with bias grid. Chip threshold is 3000 e-

Non-irradiated
efficiency = 99.1%

(ns) (ns)

Irradiated (1015 neqcm-2)
efficiency = 98.4%

Delay between particle
arrival and 40 MHz clock.

We can choose best timing!
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Depletion Depth after irradiation

not depleted

depleted

track entrance point 
from beam telescope

Track 
depth

depth (mm)
0

1000

2000

0 0.1 0.2 0.3

depletion 0.2868

-30*

depth (mm)
0

1000

2000

0 0.1 0.2 0.3

depletion 0.1879

-30*

-600 V 1x1015

depth (mm)
0

1000

2000

0 0.1 0.2 0.3

depletion 0.1047

-30*

-300 V 1x1015

non irradiated, full depletion

1x1015, 600 V, 190µm

1x1015 , 300 V, 105µm

Particle track

Depletion depth is 190 µm @ 600 V
after 1015 cm-2 (full ATLAS dose!)

No charge
seen here
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ATLAS pixel: Status

We are (nearly) ready to build the detector
- sensors are very mature & are ordered

- FEI radiation hard electronics (0.25µm):
performance is good, radiation hardness has been confirmed

- bump bonding: process matured over 4 years 

- all module production steps are established

- staves, disks and global support are being produced

Further development is needed for
- cables for power & signals

- connections at module, patch panels etc.

- signal transmission ICs


