The HADES experiment @GSI

Motivation

- Detector description
- •Performance
- •outlook

Collaboration: 18 Inst. 125 members

Motivation

 \checkmark Properties of hadrons in strong int. matter: M, G vs r, m, T, V

Vector meson \mathbf{r} , \mathbf{w} , \mathbf{f} spectral functions measurements

✓ Hadron's structure: VDM, Form factors, vector meson-nucleon inter.

Dalitz and two-body decays, pN, pN reactions

SIS / GSI : heavy ion, proton, pion beams $0 \le \mathbf{r} \le 3 \mathbf{r_0}$ $0 \le T \le 80 \text{ MeV}$

HADES: systematic dielpton spectroscopy

- meson prod. in $\pi p / pp$: $\rho = 0$, T = 0 MeV
- meson prod. in $\pi A / pA$: $\rho = \rho_0$, T = 0 MeV
- meson prod. in AA : $\rho = 1-3\rho_0$, T = 80 MeV

High Acceptance DiElectron Spectrometer

<u>Magnet</u>

SC. toroid (6 coils)

 $2\pi \inf \phi$ $18^{\circ} < \vartheta < 85^{\circ}$

Lepton Identification

RICH C_4F_{10} + gas Phot. Det. Csl - cathode

META TOF scintillator wall + Pre-Shower detector

p/p identification

META and tracking

Tracking

- p measurement, vertex reconstruction
- MDC Drift chambers dx ~ 80 mm (s)

HADES @GSI

Back view

HADES S.C. Magnet ILSE

→ SC Toroid

- $I_{max} = 3465 A$ $\Rightarrow B_{max}^{coil} = 3.7 T$ $\Rightarrow B_{max}^{air} = 0.7 T$
- $\Delta p (\theta=25^{\circ}) = 103 \text{ MeV/c}$ $\Delta p (\theta=80^{\circ}) = 60 \text{ MeV/c}$

→ Beam operation
♦ I = 2500 A

 $\Delta p (25^\circ) = 74 \text{ MeV/c}$

Ring Imaging CHerenkov Detector

 e^+e^- - identification

• Cherenkov light

 $\cos \mathbf{q} = 1/\beta \cdot \mathbf{n}(\mathbf{l})$

- $N = N_0 \cdot l_{rad} \cdot 1/g^2 \qquad (l_{rad} = 40 \text{ cm})$ $\diamondsuit N_0 \text{ det. characteristics}$
- **Radiator** (hadron blind!)

 $3 \sim g_{had} < g < g_{ep}$ $C_4 F_{10}: g = 18.3$ $p_p > 3 \text{ GeV/c}$

• VUV - Mirror

Poly-C substr. (2 mm)x/X < 2%Al + MgF2 coatingR > 80%

Photon detector (MWPC)
 CsI - cath.
 CaF₂ window

RICH in parts

Multiwire Drift Chambers

- 0.7 % mass resolution in the ρ/ω region
- Combinatorial background reduction e+,e- close pair rejection

Multiwire Drift Chambers HADES MDC

GSI plane

✓ 4 layer/sector.
 ✓ total 33 m³ active
 area, 27000 cells
 ✓ Dy<100 mm plane
 resolution
 ✓ He-iC₄H₁₀ [60-40] gas mixture and low Z material

ORSAY plane

MDC: participating Institutions:

I: GSI, II: LHE/JINR Dubna, III: FZ Rossendorf, IV: IPN Orsay

FPC- connector

TDC

C Motherboard

Analog Read-out:

- ✓ Differential amplifier, ASD8 chip, 8 channels,
- √1 fC intr. Noise, 30 mW/channel
- ✓ adjustable threshold (one for 16 channels)

TDC Features: (8 channels per chip)

- 8 channels per chip
- 250/500 ps/channel
- "2 times (t1, t2) multi-hit capable
- Zero & spike (t1-t2 < 20ns) suppression
- Calibration Mode (...mixed trigger
- "Time above threshold" (...signal shape, charge): Efficient Offline noise suppression!

Outer TOF wall **Q**>45^o:

 ✓ 6 * 64 scint. Installed.
 ✓ T line fully operational δt : 90 - 140 ps
 ✓ dE/dx measurement
 ✓ tracking

Ch. p. distribution for C+C @ 1.5 AGeV

TOF-RICH lepton identification

Start-Stop tof resolution

HADES

Exclusive tof spectrum for particles producing a signal on the RICH in the TOF-RICH coincidence angular window $| \Delta \theta | < 2^{\circ}$ and $|\Delta \phi | < 1^{\circ}$.

HADES Trigger System

- Needs level 2 trigger:
 - Ring recognition in RICH
 - Hit finding and tof calculation in TOF
 - El. Shower search in Pre-Shower
 - RICH and META candidate matching via azimuthal correlations
 - Selection of e⁺e⁻-pairs (momentum and invariant mass analysis)
 - High rates (10^5 Hz)
 - 10µs max. LVL2 trigger decision time)
 - Parallel- und Pipeline architecture FPGAs, CPLDs and DSPs

- 10⁷⁻ 10⁸ paricles/s
- 10⁵⁻⁶ interactions/s (1% target)
- Level 1 Trigger:
 - Multiplicity in TOF
 - -10^4 10⁵ central events/s
- Large data rate 3 GByte/s

Trigger distribution system

- Trigger distribution: LVL1 (TOF Mult.) and LVL2 (MU) via CTU
- DAQ synchronized via event number distribution
- Total: 50 VME-Modules

RICH IPU

- Pattern reconstruction (96x96 pad plane)
- Ring recognition
 - fixed 80 pads mask (oring/oveto region)
 - local maximum search

1 ring search mask (13x13 pads)

60

20

X (pads)

Preliminary Matching Unit Data: Nov01 C-C 1.5 AGeV magnetic field ALL Phi_RICH - Phi_META (deg) 60 Reference System: offline analysis Nent = 8384 50 40 leptons 40 20 30 LVL2 conditions in the MU: 20 1 hit in RICH -20 lepton 1 hit in TOF 10 -40 $\Delta \phi < 15^{\circ}$ -60 20 40 60 80 Theta_RICH - Theta_META (deg) -80 -60 -20 0 **Trigger condition** % evts **Efficiency** 10.5% evt >= 1 ring **RICH IPU** LVL2 evt >= 1 lepton 2.9% integrated eff 85.3% 84.7% evt >= 2 rings 4.6% 87.3% event eff 86.6% evt >= 2 leptons 1.7% N. fakes ele/evt 0.24 0.19 evt >= 1 dilepton 0.3%

Outlook

- •HADES comes into operation($e/\pi/p$ sep., LVL2 trig., tracking)
- •3 MDC layer will be completed this summer ($\delta p \approx 3\%$ for ρ/ω)
- •DAQ and LVL2 trigger commisioning

Phase I (2002 – 2003) :

(acc. proposals S200, S262)

•Continuum below $M_{inv} < 600 \text{ MeV/c}^2$; π^0 Dalitz in C+C

•High statistics e^+ , e^- production in HI reactions C+C @ 1 – 2 AGeV (compare to DLS)

•e⁺e⁻ production in π^- p (below and above threshold for **r/w**

π⁻ p @ 0.8 – 1.3 GeV/c

e⁺e⁻ pair acceptances

 $pp \rightarrow pp \ \mathbf{h} \rightarrow pp \ e^+e^-$

e⁺e⁻ pairs in C + C collisions

Simulation for 3 MDC setup :

needs 2 * 10⁹ events

~ 5 days

$$E_{beam} = 2A \text{ GeV/c}$$

e⁺e⁻ pairs in **p**⁻+p reactions

Collaboration

- Bratislava (SAS, PI)
- Catania (INFN LNS)
- Clermont-Ferrand (Univ.)
- Cracow (Univ.)
- Darmstadt (GSI)
- Dresden (FZR)
- Dubna (JINR)
- Frankfurt (Univ.)
- Giessen (Univ.)
- Milano (INFN, Univ.)
- Moscow (ITEP, MEPhI, RAS)
- Munich (Tech. Univ.)
- Nicosia (Univ.)
- Orsay (IPN)
- Rez (CAS, NPI)
- Sant. de Compostela (Univ.)
- Valencia (Univ.)