PHENIX Upgrade Plans for RHIC II

Axel Drees, SUNY Stony Brook GSI, May January 15th 2002

Overview of baseline PHENIX detector

Physics goals of RHIC II upgrades

Upsilon spectroscopy Lepton pair continuum \Rightarrow Dalitz rejection **Heavy Flavor** High pt phenomena

- \Rightarrow Silicon vertex tracking
- \Rightarrow particle ID to 10 GeV

Timeline for upgrades

The RHIC Accelerator Complex

PHENIX Physics Capabilities

designed to measure rare probes:

Au-Au & p-p spin

+ high rate capability & granularity
+ good mass resolution and particle ID
- limited acceptance

2 central arms:

electrons, photons, hadrons

- charmonium J/ψ , $\psi' \rightarrow e^+e^-$
- vector meson ρ , ω , $\phi \rightarrow e^+e^-$
- high p_T π^o, π^+, π^-
- direct photons
- open charm
- hadron physics
- 2 muon arms: muons
 - "onium" J/ ψ , ψ ', Y -> $\mu^+\mu^-$
 - vector meson $\phi \rightarrow \mu^+ \mu^-$
 - open charm
- combined central and muon arms: charm production DD -> eμ

- **global detectors**
 - forward energy and multiplicity
 - event characterization

PHENIX Setup Completed in 2003

Beyond the PHENIX Baseline Program

• Heavy Ion Physics

- shift of focus from establishing the existence of QGP and first studies of its properties to systematic study of QCD high T
- focus on key measurements not or only partially addressed by original PHENIX setup:

upsilon spectroscopy, Y(1S), Y(2S), and Y(S3) lepton pair continuum: low mass to Drell Yan heavy flavor high p_T phenomena

for these measurements the PHENIX central and muon spectrometer are essential but not sufficient !

PHENIX Beyond the Baseline

- Spin Physics
 - gluon spin structure over large x range
 - heavy flavor
 - W-Boson
 - transversity
- p-A Physics
 - parton structure of nuclei
 - diffractive processes

Measurement focus on rare processes ⇒ **requires high luminosity**

Expected luminosity upgrades at RHIC (RHIC-II)Au-Au $L \sim 8 \ge 10^{27} \text{ cm}^{-2} \text{s}^{-1}$ (x40)O-O $L \sim 1.6 \ge 10^{29} \text{ cm}^{-2} \text{s}^{-1}$ p-p $L \sim 4 \ge 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (possibly -> $4 \ge 10^{33} \text{ cm}^{-2} \text{s}^{-1}$)

Upsilon Spectroscopy

Upsilon	mass	Br(µµ)	relative
	(GeV)	%	yield
Y(1S)	9.460	2.48	1
Y(2S)	10.023	1.31	0.36
Y(3S)	10.355	1.81	0.27

north muon arm: $\sigma_m \sim 190 \text{ MeV}$ south muon arm $\sigma_m \sim 240 \text{ MeV}$

22 week of Au-Au at 2 10²⁶ cm⁻²s⁻¹ total of ~ 400 Y decays (~ 1/10 in central arms)

Iuminosity upgrade to 8 10²⁷ cm⁻²s⁻¹ muon spectrometer: central spectrometer:

~ 16000 Y ~ 1600 Y

PHENIX Detector Upgrades

- central vertex spectrometer
 - flexible magnetic field
 - multi layer silicon vertex tracker
 - TPC/HBD
- forward vertex tracking
 - multiple layer silicon
- enhanced particle ID
 - TRD (east)
 - Aerogel/TOF (west)
- enhanced muon trigger
 - forward hodoscopes
 - forward calorimeter
 - station 1 anode readout
- pA trigger detectors

DAO

Rate and Yield Estimates for Low Mass Dileptons

Au-Au collisions at $\sqrt{s_{NN}}$ =200 GeV

•	Luminosity	2 x 10 ²⁶ cm ⁻² s ⁻¹
	Interaction rate	1200 Hz
	10 weeks run	6.05 10 ⁶ sec
	RHIC and PHENIX efficiency	0.25
•	dN/dy (π^{0}) per min. bias event	100

DAQ bandwidth limitation: $\sim 330 \text{ Hz} \Rightarrow 5 10^8 \text{ events}$

		m=.25	ρα	ο φ	
•	Y(e ⁺ e ⁻) per π^{0} (p _T > 200 MeV)	1.1 10 -6	1.2 10 -7	1.5 10 -7	1.7 10 -7
•	pair reconstruction efficiency		0.25		
•	Total yield (10 weeks run)	55000	6000	7500	8500
•	without trigger	11000	1500	1900	2200

Au-Aupair trigger usefulp-ppair trigger mandatory

Electron ID in PHENIX central arms

Acceptance: $p_t > 100-200 \text{ MeV/c}$

 $\Delta \phi = 2x \pi/2$ -0.35 < η < 0.35

Au-Au data 2001

E/P ratio

Electron ID at low momentum • RICH

• EMCAL E-p matching

 $e/\pi \sim 7~10^{-4}$

at lower pt include TOF (400 ps)

Experimental Challenge

huge combinatorial pair background due to copiously produced photon conversion and Dalitz decays :

In PHENIX:

 $\gamma \rightarrow e^+e^-$

combinatorial background factor > 250 larger than signal

Note: ϕ and ω can be measured due to excellent mass resolution

charm contribution is significant

- need rejection of > 90% of $\gamma \rightarrow e^+ e^-$ and $\pi^o \rightarrow \gamma e^+ e^-$
- active recognition and rejection of background pairs

Strategy for Low Mass Pair Measurement

background pairs have low mass and small opening angle Θ

Opening angle not so small at collider				
cut degree	rejection %	Pion pileup %	with e/π ~ 10	with e/π ~ 50
10	77	24	3	0.5
20	89	79	11	2
30	94	100	23	5
40	96	100	39	1 8
			/	

need e-ID to use opening angle

- Low inner B field to preserve opening angle with rough momentum measurement
- Identify signal electrons (p_t > 200 MeV) in outer PHENIX detectors
- Identify low momentum electrons (pt < 200 MeV) using Cherenkov light in Hadron Blind Detector (HBD) and/or dE/dx from TPC
- Measure momentum with TPC (few % δp/p)
- Use cuts on opening angle (or Θ < 350 mrad) and on invariant mass (m < 140 MeV) to reject background

Principle Monte Carlo Simulation

Efficiency - background rejection in ϕ mass range (20 MeV bin) **Opening angle cut** Without Dalitz rejection 0.8 ▲ $|\delta\eta| \leq 0.35 \& \delta\varphi = 90$ $S/B \sim 1/7$ 0.7 𝔅 |δη| ≤0.40 & δφ=100 50 N_{im}(BG)/event & N_{poir}(¢)/event(×7.15*10⁻³) Assume for inner detector O $|\delta \eta|$ ≤0.45 & $\delta \varphi$ =110 0.6 • perfect electron ID ($\varepsilon_e = 100\%$) \Box $|\delta\eta| \leq 0.50 \& \delta\varphi = 120$ 40 • perfect π rejection 0.5 • perfect double hit resolution S ³⁰ $S/B \sim 10$ 0.4 **Effect of increased acceptance** 0.3 20 "veto region" : |δη|< 0.40 $\delta \phi < 100^{\circ}$ 0.2 10 $S/B \sim 30$ 0.1 **Include:** double hit resolution 0 0 0.15 0.2 0.2 0.1 0.1 0.3 0.05 0.25

• open charm contribution

S/B ~ 1-3

+ additional rejection from mass cut

 $\Theta_{cut}(rad.)$

Axel Drees

 $\Theta_{\rm cut}(\rm rad.)$

TPC/HBD Strawman Design

Monte Carlo Simulation of Hadron Blind Detector

GEM Performance Studies

B.Yu, UWG, 4/16/02

Double GEM Detetor Schematic Cross Section

X-ray Position [mm]

R&D effort at BNL/Weizmann:

(with resistive divider)

open charm production from inclusive electrons

A high precision vertex detector will allow a clean separation of charm and bottom decays

	m	cτ	$\rightarrow eX$
	GeV	μm	%
D ⁰	1865	125	6.75
D [±]	1869	317	17.2
B ⁰	5279	464	5.3
 B±	5279	496	5.2

Need secondary vertex resolution \sim 30 - 50 μ m

Proposed Silicon Tracker in PHENIX

Signal/Background with DCA cut

Technology Choices for Silicon Vertex Tracker

target date for silicon barrel: 2004-2005

• Silicon Strips

- Prototype development at BNL
- readout electronic options ABCD chip (ATLAS) SVX4 chip (Fermilab) AP6 (CMS)
- Hybrid Silicon Pixel

....

- adapt ALICE (NA60) readout chip
- R&D collaboration with NA60/ALICE (two postdoc's at CERN)
- sensors for NA60 being developed at BNL

• Monolithic active pixels

- Lepsi, LBL (STAR), Iowa State
- longer time scale

Silicon Strip Sensor Development

• Prototype development at BNL

- 80 µm x 3 cm strips
- 2x 375 strips
- stereoscopic projections
- 80 µm x 1 mm effective strip size
- readout on both sides
- 1500 channels
- Tests this summer/fall

Time Scale and Cost

2002 - Completion of Baseline Detector Install North Muon Spectrometer Upgrade TEC to TRD

2002-2004

Silicon strip detectors Prototype silicon pixel detector Prototype HBD (upgradable to TPC) Prototype aerogel detector

2005-2007 Complete silicon pixel detectors Complete TPC/HBD Complete aerogel detector

R&D 2002-2005

- presently supported by various institutional funds (LDRDs,RIKEN)
- requires ~ 3-4 \$M over 3-4 yrs
- needs DOE funding to continue

Construction 2004-2007

- Staged approach, with detectors requiring less R&D to be implemented first
- Rough estimate of detector construction costs ~ \$10-15M
- NSAC plan shows \$80M in RHIC II detector upgrades over 7 years starting in FY05

