

Charmonium and charmonium-like resonances from lattice QCD

Sinéad M. Ryan Trinity College Dublin

EMMI, 14th October 2015

MY CHARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

MY CHARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

Outline

- Introduction and motivation
- Some lattice technicalities
 - A toolbox for resonance calculations on the lattice
- Selected results
 - precision low-lying and excited state spectrum
 - pioneering results above threshold: the XYZ states
- Summary: conclusions and perspectives

MY CHARMING COLLABORATORS...

Graham Moir, Mike Peardon, Christopher Thomas

Outline

- Introduction and motivation
- Some lattice technicalities
 - A toolbox for resonance calculations on the lattice
- Selected results
 - precision low-lying and excited state spectrum
 - pioneering results above threshold: the XYZ states
- Summary: conclusions and perspectives

Many results and details omitted for time (and clarity!) constraints - APOLOGIES!

A CHARM REVOLUTION: CCBAR

X,Y,Z states: narrow charmonium-like structures above the open charm threshold. Not all in ${}^{2S+1}L_J$ pattern - what is the nature of these states?

States below open charm threshold: $\eta_c(15, 25), J/\Psi(15, 25)$ $\chi_{c(0,1,2)}(1P), h_c(1P).$

- X(3872): close to $D\bar{D}^*$ threshold a molecular meson?
- X(4260): 1⁻⁻⁻ hybrid meson?
- X(4430)[±]: charged not *cc*: tetraquark?
- No clear picture has emerged.

from talk by R. Mitchell \longrightarrow

Anatomy of charmonium on the lattice

CHARM QUARKS AND LATTICE QCD

For heavy quarks $O(am_q)$ can be large [*a* is the lattice spacing] and must be controlled. There are now well-established methods:

- NRQCD
- Brute force make *a* "small enough" ... expensive but doable now!
- Fermilab an effective theory that interpolates smoothly between heavy and light
- Anisotropic lattices: $a_t m_c < 1$ to control discretistation.

Charm is not light but not (really) heavy either. NRQCD not really suitable.

A RECIPE FOR (MESON) SPECTROSCOPY

Precision Spectroscopy: below threshold

- Construct a basis of local and non-local operators $\bar{\Psi}(x) \Gamma D_i D_i \dots \Psi(x)$ from distilled fields (PRD80 (2009) 054506].
- Build a correlation matrix of two-point functions

$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

- Ground state mass from fits to e^{-Ent}
- Beyond ground state: Solve generalised eigenvalue problem $C_{ii}(t)v_i^{(n)} = \lambda^{(n)}(t)C_{ii}(t_0)v_i^{(n)}$
- eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} [1 + O(e^{-\Delta E t})]$ principal correlator
- eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n} e^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$

- operators of definite *J^{PC}* constructed in step 1 are subduced into the relevant irrep
- a subduced irrep carries a "memory" of continuum spin J from which it was subduced it **overlaps** predominantly with states of this J.

- Using $Z = \langle 0 | \Phi | k \rangle$, helps to identify continuum spins
- For high spins, can look for agreement between irreps
- Data below for T_1^{--} irrep, colour-coding is **Spin 1**, **Spin 3** and **Spin 4**.

\dots The rest of the spin-4 state

- All polarisations of the spin-4 state are seen
- Spin labelling: Spin 2, Spin 3 and Spin 4.

Precision Spectroscopy: states below strong decay thresholds

SINGLE HADRON STATES: BELOW THRESHOLD

- Methods: tested, validated.
- High statistics and improved actions for precise results.
- Different actions in agreement.
- Simulation at m_q^{phys} or extrapolation $m_q \rightarrow m_q^{\text{phys}}$.
- Discretisation errors $O(am_c)$ and $O(am_b)$ under control,

Charmonium, HPQCD 1411.1318

Continuum limit, physical quark masses

No disconnected diagrams in $c\bar{c}$ spectrum: OZI suppressed - assumed to be small \Rightarrow mixing with lighter states not included

Precision Spectroscopy: single hadron states near/above thresholds

SINGLE HADRON STATES: ABOVE THRESHOLD

Precision calculation of high spin ($l \ge 2$) and exotic states is relatively new

Caveat Emptor

- Physics of multi-hadron states appears to need relevant operators
- No continuum extrapolation
- Relatively heavy pions ← already changing

→ Expect improvements now methods established

INTRODUCTION 000000

HYBRIDS

Lightest hybrid supermultiplet and excited hybrid supermultiplet same pattern and scale as in charmonium and light^[HadSpec:1106.5515] sectors.

LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most $c\bar{c}$ calculations. Distillation allows precision determination. BUT it's a can of worms!

LAST COMMENT ON SINGLE-HADRON SPECTRUM

Disconnected diagrams a remaining uncertainty in most $c\bar{c}$ calculations. Distillation allows precision determination. BUT it's a can of worms!

from HadSpec

 $\Delta(1^{--}) = -17(16) \text{MeV}$

Charmonium-like Resonances in Lattice QCD

- Pioneering calculations by Lang, Prelovsek and collaborators
- New ideas developed and tested for light mesons will be applied to charmonium

SCATTERING IN A EUCLIDEAN THEORY

Lose direct access to scattering in (Euclidean) lattice calculations

Lüscher found a way to extract scattering information in the elastic region from LQCD. [NPB354, 531-578 (1991)]

• related lattice energy levels in a finite volume to a decomposition of the scattering amplitude in partial waves in infinite volume

 $det \left[\cot \delta(E_n^*) + \cot \phi(E_n, vecP, L) \right] = 0$

and $\cot \phi$ a known function (containing a generalised zeta function).

• To use this idea need energy levels at extraordinary precision. This is why it has taken a while ...

A different approach from HALQCD via energy-independent potentials was discussed by Oka.

USING LÜSCHER'S IDEA

Now in use to determine resonance parameters

Many talks at Lattice 2015

RECENT PROGRESS

- Generalised for: moving frames; non-identical particles; multiple two-particle channels, particles with spin, by many authors.
- The precision and robustness of some numerical implementations is now very impressive. [*See talks at Lattice* 2015]
- First coupled-channel resonance in a lattice calculation

 $\pi K \rightarrow \eta K$ by D. Wilson et al 1406.4158 and 1507.02599

X(3872)

Prelovsek & Leskovec 1307.5172

ground state: $\chi_{c1}(1P)$ $D\bar{D}^*$ scattering mx: pole just below thr. *Threshold* ~ $m_{u,d}$ and m_c discretisation?

Padmanath, Lang, Prelovsek 1503.03257

X(3872) not found if $c\bar{c}$ not in basis.

Also results from Lee et al 1411.1389 State is within 1MeV of $D^0 \overline{D}^{0*}$ and 8MeV of $D^+ D^*$ thresholds: isospin breaking effects important?

Z_c^+

An "exotic" hadron i.e. does not fit in the quark model picture.

There are a number of exploratory calculations on the lattice.

Challenges:

- The *Z*⁺_{*c*} (and most of the XYZ states) lies above several thresholds and so decay to several two-meson final states
- requires a coupled-channel analysis for a rigorous treatment
- on a lattice the number of relevant coupled-channels is large for high energies.

State of the art in coupled-channel analysis:

- Lüscher: *κ*π, *κ*η [HSC 2014,2015]
- HALQCD: Z_c [preliminary results see Oka's talk yesterday]

FIRST LOOK ON THE LATTICE

Prelovsek, Lang, Leskovec, Mohler: 1405.7615

- 13 expected 2-meson e'states found (black)
- no additional state below 4.2GeV
- no Z_c^+ candidate below 4.2GeV

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Zc? Is Z_c^+ a coupled channel effect? What can HALQCD say? Work needed!

MANY OTHER STATES BEING INVESTIGATED

Precision Spectroscopy: below threshold

Tetraquarks:

- Double charm tetraquarks $(I^P = 1^+, I = 0)$ by HALQCD [PLB712 (2012)]
 - attractive potential, no bound tetraquark state
- Charm tetraquarks: variational method with *DD**, *D***D** and tetraquark operators finds no candidate.

Y(4140)

- Ozaki and Sasaki [1211.5512] no resonant Y(4140) structure found
- Padmanath, Lang, Prelovsek [1503.03257] considered operators: $c\bar{c}, (\bar{c}s)(\bar{s}c), (\bar{c}c)(\bar{s}s), [\bar{c}\bar{s}][cs]$ in $J^P = 1^+$. Expected 2-particle states found and $\chi_{c1}, \chi(3872)$ not Y(4140).

See Prelovsek @ Charm2015 for more

CHALLENGES ...

There have been many successes in charmonia in the last 5 years including

- determination of the spectrum of single-hadron states
- application of Luscher method and HALQCD's approach to study states near/above decay thresholds

Many challenges remain

- A determination of states including disconnected diagrams and mixing with light states
- Improvements to existing calculations understanding the effect of lighter light quarks on thresholds etc, simulations at multiple and larger volumes
- Handling the large number of coupled-channels that emerged on larger volumes
- Doing a coupled channel analyses of charmonium and charmonium-like states
- A general framework for coupled channels for scattering involving more than 2 hadrons. Some progress [M. Hansen @ Lattice 2015]
- Understanding the physics!

CHALLENGES ...

There have been many successes in charmonia in the last 5 years including

- determination of the spectrum of single-hadron states
- application of Luscher method and HALQCD's approach to study states near/above decay thresholds

Many challenges remain

- A determination of states including disconnected diagrams and mixing with light states
- Improvements to existing calculations understanding the effect of lighter light quarks on thresholds etc, simulations at multiple and larger volumes
- Handling the large number of coupled-channels that emerged on larger volumes
- Doing a coupled channel analyses of charmonium and charmonium-like states
- A general framework for coupled channels for scattering involving more than 2 hadrons. Some progress [M. Hansen @ Lattice 2015]
- Understanding the physics!

Thanks for listening!