What we know and what we don't know in Light Baryon Spectroscopy

Makoto Oka

Tokyo Institute of Technology and
Theoretical Physics Institute, ASRC, JAEA
EMMI Rapid Reaction Task Force
"Resonances in QCD"
13 Oct.2015@GSI

Contents

1. Introduction

We know

We don't know

2. Puzzles: $\Lambda(1405)$ and $\mathbf{N *}(1440)$
3. Quark numbers and Compositeness
4. Diquarks and Heavy baryons
5. Conclusion

Introduction

\# Fundamental theory of hadron structures and interactions is Quantum ChromoDynamics (QCD).
\# One of the major goals of QCD is to reproduce and predict the hadron spectrum.
\# The hadron spectrum should reveal symmetries and dynamics of the QCD vacuum and clarify effective degrees of freedom of low-energy QCD.
\# Recent observations of various types of hadron resonances (+exotics) open up a new-generation hadron spectroscopy.
\# There we may learn much from Nuclear Physics, which have treated diverse quantum phenomena of multi-particle systems. (clustering, deformations, collective motions, etc.)

QCD: mass scale

\# QCD Lagrangian

$$
\mathcal{L}=\bar{q}\left(i \not D-m_{q}\right) q-\frac{1}{2} \operatorname{Tr}\left[G_{\mu \nu} G^{\mu \nu}\right]
$$

massless gluons + light quarks ($\mathrm{m}_{\mathrm{u}}=2.3 \mathrm{MeV}, \mathrm{m}_{\mathrm{d}}=\mathbf{4 . 8} \mathrm{MeV}$)
\# No low energy mode is given by the sum of the constituents. massless gluons $=>$ glueballs $\left(\mathrm{m}_{\mathrm{GB}} \sim 1.4 \mathrm{GeV}\right.$ or larger) light quarks $=>$ mesons ($>140 \mathrm{MeV}$), baryons ($>900 \mathrm{MeV}$)
\# Scale anomaly $\Lambda_{\mathrm{QCD}} \sim 250 \mathrm{MeV}$ and non-trivial vacuum with chiral symmetry breaking: $\langle\bar{u} u\rangle \simeq\langle\bar{d} d\rangle \sim-(250 \mathrm{MeV})^{3} \sim \mathrm{O}\left(\Lambda^{3}\right)$
\# The QCD quarks+gluons are not enough. The main goal of the hadron spectroscopy is to clarify the roles of effective (lowenergy) degrees of freedom, or Quasi-Particles (QP).

QCD: Effective Degrees of Freedom

\# House of composite hadrons
1st floor: QCD quarks and gluons
They do not give quantum numbers of the low-lying eigenstates. They do not explain why we do not have exotic multi-quark states.

QCD: Effective Degrees of Freedom

\# House of composite hadrons 1st floor: QCD quarks and gluons
2nd floor: Quasi-Particles (Effective Degrees of Freedom)
\# Two categories
colored QP
constituent quarks
constituent gluons di-quarks
color-singlet QP
NG bosons
low-lying mesons and baryons

QCD: Effective Degrees of Freedom

\# House of composite hadrons
1st floor: QCD quarks and gluons
2nd floor: Quasi-Particles
3rd floor: Hadron Resonance (excited) states
\# Quasi-Particles in QCD are the key to unlock and predict excited hadrons and spectrum patterns.

Room 201: Colored QP

\# Constituent quark with spin $1 / 2$, mass $\sim m_{q}+350 \mathrm{MeV}$ basis of the constituent quark model
\# Colored diquark
diquark correlation, clusters in hadrons
[ud] ($\left.0^{+}, \mathrm{I}=\mathbf{0}\right)$: good diquark, mass $<\mathbf{6 0 0} \mathbf{M e V}$
\# Constituent glue
explicit gluon degrees of freedom:

Room 202: Hadrons (white QP)

\# Light hadrons as building blocks ("Atoms"):
Nambu-Goldstone bosons: $\pi, K, \eta, D, B, \ldots$
Vector mesons: $\rho, \omega, \phi, D^{*}, \ldots$
GS baryons (8+10): $\mathbf{N}, \Delta, \Lambda, \ldots$
\# Now, some (not all?) of the excited states, such as $\Lambda(1405), \mathrm{X}(3872), \ldots$, may be their bound states, i.e., "Molecules".

What are the roles of these QPs? Where are they seen?

QCD: Effective Degrees of Freedom

\# How are they identified, or detected?
\# Production rates, decay patterns, and branching ratios are sensitive to the hadron structure.
\# Examples:
$\Delta(1232)\left(3 / 2^{+}\right) \Leftrightarrow \mathbf{N}(940)\left(1 / 2^{+}\right)+\gamma:(\mathrm{M} 1+\mathrm{E} 2)$ photon

- Mixed E 2 is directly related to the deformation of N and Δ.
- Size of the resonance wave functions can be extracted from the transition rate. It should be larger in hadron molecules.
\# $\mathbf{N}(1535), \mathbf{N}(1650)(L=1, S=1 / 2,3 / 2) \rightarrow \mathbf{N} \eta, N \pi$
- Large $\mathbf{N} \eta$ amplitude of $\mathbf{N}(1535)$ indicates a strong (tensorforce) mixing of the spin $1 / 2$ and $3 / 2$ states.

QCD: Effective Degrees of Freedom

\# In heavy baryons, the (strong) decay patterns may be useful.

Institute

$\Lambda(1405)$

$\Lambda(1405)$: the lightest negative-parity $\left(J^{\pi}=1 / 2^{-}\right)$baryon

(1405) in QM

flavor singlet $3 q$ (uds) $S=1 / 2, L=1$ orbital excitation
$=>J=1 / 2^{-}$and $3 / 2^{-}:$spin-orbit partner $\Lambda(1520) 3 / 2^{-}$?
$L=1$ excitation costs around $\mathrm{N}(1535)-\mathrm{N}(940) \sim 600 \mathrm{MeV}$
ì $5 q$ (udsuū + udsd \bar{d})
$L=0$ state, i.e. No orbital excitation required.

+ diquark structure
$(\mathbf{u d})_{s=0}(\mathbf{s u})_{s=0} \overline{\mathbf{u}} \rightarrow S_{\text {tot }}=1 / 2$ (no $J=3 / 2$ partner)
adding a pair of quarks costs $\pi(140) / \rho(770) \sim 550 \mathrm{MeV}$

$3 q$ excitation v.s. pentaquark

Neither of them gives the low mass of $\Lambda(1405)$.

$\Lambda(1405)$ as Molecules

\# S-wave bound state of $K^{\text {bar }} \mathbf{N}$ coupled with $\pi \Sigma$
Chiral Unitary Approaches predict two resonance poles for Λ (1405).
Oller, Meissner, PLB500 (2001) 263; Jido et al., NPA725 (2003) 181
Consists of a $\mathrm{K}^{\text {bar }} \mathbf{N}$ bound state and a $\pi \Sigma$ resonance.
Hyodo, Weise, PRC77 (2008) 035204

nstitute

We have two lessons:
\# Excited hadrons are very sensitive to nearby THRESHOLDS.
\# Complete descriptions of resonances require CHANNEL COUPLINGS.

$\Lambda(1405)$ on Lattice

\# A recent LQCD analysis by claims the dominance of the $K^{\text {bar }} \mathbf{N}$ component using a "matrix Hamiltonian model" analysis. Hall et al. PRL 114 (2015) 132002

$\Lambda(1405)$ on Lattice

\# A recent LQCD analysis by claims the dominance of the $K^{\text {bar }} \mathbf{N}$ component using a "matrix Hamiltonian model" analysis. Hall et al. PRL 114 (2015) 132002

Note: Only three-quark operators are used for this analysis. An alternative approach is to employ $B+M$ operators.

Resonances in Lattice QCD

\# Need to distinguish resonance state from hadronic scattering states. On lattice with finite volume, scattering states are also discrete.
\# Real scaling method may be used to distinguish the resonance from scattering states. The most popular is Lüscher's method by using the $1 / L$ dependences of the discrete spectrum on the lattice.
\# HAL-QCD has developed a method to define and calculate a phase-shift equivalent (non-local) potential on the lattice. It can be applied to coupled-channel (multi-threshold) systems. Then the resonance can be analyzed in the effective theory approach.
N. Ishii, S. Aoki, T. Hatsuda, PRL 99 (2007) 022001; Prog. Theor. Phys. 123 (2010) 89-128.

H di-baryon

The H di-baryon ($=\mathbf{u}^{\mathbf{2}} \mathbf{d}^{\mathbf{2}} \mathbf{s}^{\mathbf{2}} ; \mathbf{J}=\mathbf{0}^{+} \mathbf{I}=\mathbf{0}$) predicted by Jaffe (1977) belongs dominantly to flavor $\mathrm{SU}(3)$ singlet. A strong channel coupling is expected among

$$
\begin{aligned}
& \mid \text { Singlet }\rangle=\sqrt{\frac{1}{8}}|\Lambda \Lambda\rangle+\sqrt{\frac{4}{8}}|N \Xi\rangle-\sqrt{\frac{3}{8}}|\Sigma \Sigma\rangle \\
& \begin{array}{l}
\text { (MeV) } \\
\Sigma \Sigma \\
\mathbf{1 5 0}
\end{array} \\
& \begin{array}{ll}
\mathrm{NE} & 28= \\
\Lambda \Lambda & 0= \\
& H \text { (narrow resonance?) } \\
\text { H (bound) }
\end{array}
\end{aligned}
$$

H di-baryon

The H di-baryon ($=\mathbf{u}^{\mathbf{2}} \mathbf{d}^{2}$ belongs dominantly to fl: A strong channel couplir

$$
\begin{gathered}
\mid \text { Singlet }\rangle=\sqrt{\frac{1}{8}}|\Lambda \Lambda\rangle+1 \\
(\mathbf{M e V}) \\
\Sigma \Sigma^{\mathbf{1 5 0}}
\end{gathered}
$$

$N \Xi$	$28 \square$
$\Lambda \Lambda$	$0 \square$

K. Sasaki et al., (HAL-QCD) arXiv:1504.01717

Roper puzzle

\# $\mathbf{N}(1440) 1 / 2^{+}$resonance and its siblings

\# Quark model picture of "positive-parity" excited states

\# Why is this state lighter than $\mathbf{N}(1520), \mathbf{N}(1535), \mathbf{N}(1650)$?

$$
3 / 2^{-} \quad 1 / 2^{-}
$$

harmonic/linear confinement $\rightarrow(1 p)<(2 s)$
Coulomb potential $\rightarrow(1 p)=(2 s)$
\# The other positive parity states are heavier. $\mathbf{N}(1680) 5 / 2^{+}, N(1710) 1 / 2^{+}, N(1720) 3 / 2^{+}, N(1860) 5 / 2^{+}, \ldots$

Roper puzzle

\# Similar states in the strange/ Δ states, which are aligned at 500 MeV above the ground states.

\# Possible solutions: Strong channel couplings? Collective (Breathing) mode excitations? (in Skyrmion) Pentaquarks? (in Chiral soliton model)

 \# What does QCD tell us?

 \# What does QCD tell us?
 Lattice QCD struggles with Roper.

PHYSICAL REVIEW D 76, 054510 (2007)

Even parity excitations of the nucleon in lattice QCD

B. G. Lasscock, ${ }^{1}$ J. N. Hedditch, ${ }^{1}$ W. Kamleh, ${ }^{1}$ D. B. Leinweber, ${ }^{1}$ W. Melnitchouk, ${ }^{2}$ A. G. Williams, ${ }^{1}$ and J. M. Zanotti ${ }^{3}$

${ }^{1}$ Special Research Centre for the Subatomic Structure of Matter, Adelaide, South Australia 5005, Australia, and Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
${ }^{2}$ Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
${ }^{3}$ School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
(Received 7 May 2007; published 28 September 2007)
We study the spectrum of the even-parity excitations of the nucleon in quenched lattice QCD. We extend our earlier analysis by including an expanded basis of nucleon interpolating fields, increasing the physical size of the lattice, including more configurations to enhance statistics and probing closer to the chiral limit. With a review of world lattice data, we conclude that there is little evidence of the Roper resonance in quenched lattice QCD.

Roper puzzle

\# Full QCD suggests that the 2nd state may go down?

Roper resonance in $2+1$ flavor QCD Phys. Lett. B707 (2012)
M. Selim Mahbub ${ }^{\text {a,b,* }}$, Waseem Kamleh ${ }^{\text {a,b }}$, Derek B. Leinweber ${ }^{\text {a,b }}$, Peter J. Moran ${ }^{\text {a,b,c }}$, Anthony G. Williams ${ }^{\mathrm{a}, \mathrm{b}}$

Baryon Resonances

\# Competition of different pictures
3 valence quarks in orbital excitations OR
compact multi-quark states

OR

hadron molecules
\# And we need couplings to open channels!
\# Which is dominant? In which resonance?
How can we distinguish them in Experiments?
And in Theories?

Number of quarks in QCD

"Counting" the number of quarks?
There is no conserved current corresponding to the \# of quarks: $\mathbf{N}(\mathbf{q})+\mathbf{N}(\bar{q})$.

It may depend on choices of the quark operator. Ex. Bogoliubov transformation may change the \# of quarks in a hadron.

Any reasonable definition of the numbers of "valence" quarks?
Parton distribution in the light-cone frame?

Number of quarks in QCD

"Counting" the number of quarks?
There is no conserved current corresponding to the \# of quarks: $\mathbf{N}(\mathbf{q})+\mathbf{N}(\bar{q})$.

It may depend on choices of the quark operator.
Ex. Bogoliubov transforma \# of quarks in a hadron.

Any reasonable definition of the n Parton distribution in the light-

sea quarks valence quarks

Counting the number of quarks?

Recombination of partons in HI collisions

R. J. Fries, et al., PRL 90,202303(2003), PRC68,044902(2003)
$\mathbf{q} \overline{\mathbf{q}} \rightarrow \mathbf{2}\left\langle\mathbf{p}_{\mathbf{T}}\right\rangle$
$\mathbf{q q q} \rightarrow \mathbf{3}\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle$

Counting the number of quarks?

Recombination of partons in HI collisions

R. J. Fries, et al., PRL 90,202303(2003), PRC68,044902(2003)
$\mathbf{q} \overline{\mathbf{q}} \rightarrow \mathbf{2}\left\langle\mathbf{p}_{\mathbf{T}}\right\rangle$
$\mathrm{qqq} \rightarrow \mathbf{3}\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$

Quark number scaling of the elliptic flow v_{2}

Counting the number of quarks?

Recombination of partons in HI collisions
R. J. Fries, et al., PRL 90,202303(2003), PRC68,044902(2003)
$\mathbf{q} \overline{\mathbf{q}} \rightarrow \mathbf{2}\left\langle\mathbf{p}_{\mathbf{T}}\right\rangle$
$\mathbf{q q q} \rightarrow \mathbf{3}\left\langle\mathbf{p}_{\mathbf{T}}\right\rangle$

Quark number scaling of the elliptic flow v_{2}

By counting the number of valence quarks in hadron resonances, we may identify multi-quark exotic states.

Counting the number of quarks?

\# Cho et al. (ExHIC collaboration) PRL 106 (2011) 212001 PRC84 (2011) 064910
Coalescence / Statistical model ratios Comparison of $\mathbf{3 q}$ vs $\mathbf{5 q}$ vs BM-molecule structures

Coalescence / Statistical model ratio at RHIC

Coalescence / Statistical model ratio at LHC

Compositeness

\# Can we distinguish compact multi-quark states from hadron molecules (composite)?
\# Composite nature of hadron resonances can be formulated by the use of the (re)normalization of the resonance pole. "Compositeness" may be "defined" unambiguously near multi-hadron thresholds.

- Weinberg, PR137 (1965) B672, "Evidence that the deuteron is not an elementary particle",
- Sekihara, Hyodo, Jido, PTEP 2015, 063D04, "Comprehensive analysis of the wave function of a hadronic resonance and its compositeness".

Diquarks and
 Heavy Baryon Resonances

Heavy Quark Spin Symmetry

Magnetic gluon coupling is suppressed

$\bar{\Psi} \gamma^{\mu} \frac{\lambda^{a}}{2} \Psi A_{\mu}^{a} \sim \underbrace{\Psi^{\dagger} \frac{\lambda^{a}}{2} \Psi A_{0}^{a}}-\Psi^{\Psi^{\dagger} \sigma \frac{\lambda^{a}}{2} \Psi \cdot \frac{1}{m_{Q}}\left(\nabla \times A^{a}\right)}$
(Color Electric coupling) > (Color Magnetic coupling)
HQ spin-flip amplitudes are suppressed by ($1 / \mathrm{m}_{\mathrm{Q}}$).
\Rightarrow Heavy Quark Spin Symmetry

Heavy Quark Spin Symmetry

HQ spin symmetry $\quad\left[S_{Q}, H\right]=O\left(\frac{1}{m_{Q}}\right)$
Q
q
$\boldsymbol{q} \Longleftarrow \vec{J}=\vec{S}_{Q}+\vec{j}_{L} \quad \vec{j}_{L}=\vec{S}_{q}+\vec{L}_{q}$ $J=j_{L} \pm \frac{1}{2}$ states are degenerate in the HQ limit.

$$
j_{L}=1 \rightarrow \mathbf{1}^{+} \text {diquark }
$$

Spectroscopy of Light Diquarks

Diquark

\# QCD predicts attraction in the PS and S channels:
PS meson $\mathrm{qq}^{\text {bar }}:$ color $1, \mathrm{~J}^{\pi}=0^{-}$, flavor $1+8$
S diquark $[\mathrm{qq}]_{0}$: color $3^{\text {bar }}, \mathrm{J}^{\boldsymbol{\pi}}=\mathbf{0}^{+}$,
flavor $\mathrm{SU}(3) 3^{\text {bar }}:[\mathrm{ud}]_{0,}[\mathrm{ds}]_{0},[\mathrm{sd}]_{0}$
\# One gluon exchange - color magnetic interaction
CMI $=(-\alpha) \Sigma_{i j}\left(\lambda_{i} \cdot \lambda_{j}\right)\left(\sigma_{i} \cdot \sigma_{j}\right)=-16 \alpha$ for PS qq ${ }^{\text {bar }}$ meson $=-8 \alpha$ for $S q q$ diquark
\# $\mathrm{M}(\mathrm{A})-\mathrm{M}(\mathrm{S})=(2 / 3)[\mathrm{M}(\Delta)-\mathrm{M}(\mathrm{N})] \sim 200 \mathrm{MeV}$
$(32 / 3) \alpha \quad+8 \alpha-(-8 \alpha)=16 \alpha$

Diquark

\# Diquarks in (quenched) lattice calculations
■ Hess, Karsch, Laermann, Wetzorke, PR D58, 111502 (1998)
from the correlators in the Landau gauge

$$
\mathrm{m}_{\mathrm{q}} \sim 342 \mathrm{MeV}, \mathrm{M}(\mathrm{~S}) \sim 694 \mathrm{MeV}, \mathrm{M}(\mathrm{~A}) \sim 810 \mathrm{MeV}
$$

■ Alexandrou, de Forcrand, Lucini, PRL 97, 222002 (2006) gauge invariant calculation inside a Qqq system M(A) - M(S) ~ 100-150 MeV, R(S) ~ $\mathbf{1 ~ f m}$
M(PS) - M(S) ~ 600 MeV
■ Babich, et al., PR D76, 074021 (2007)
diquark correlation and effective mass in the Landau gauge
M(S) - 2m m_{q} ~ $\mathbf{- 2 0 0} \mathbf{~ M e V , ~ M (A) ~ - ~ M (S) ~ ~ 1 6 2 ~ M e V ~}$
■ DeGrand, Liu, Schaefer, PR D77, 034505 (2008)
diquark correlation in the light baryon
S: strongly attractive, PS: attractive for small m_{q}

Diquark

\# Heavy Baryons, $\Lambda_{\mathrm{Q}}, \Sigma_{\mathrm{Q}}=\mathbf{Q}+(\mathrm{qq})$
Because the spin dependent interaction is suppressed between the heavy \mathbf{Q} and light quarks, the heavy baryon spectrum is sensitive to the light diquark (qq) spin-dependent correlation.

		J^{π}	color	flavor
Pseudoscalar	$\epsilon_{a b c}\left(u_{a}^{T} C d_{b}\right)$	0^{-}	$\overline{3}$	$\overline{3}(I=0)$
Scalar	$\epsilon_{a b c}\left(u_{a}^{T} C \gamma^{5} d_{b}\right)$	0^{+}	$\overline{3}$	$\overline{3}(I=0)$
Vector	$\epsilon_{a b c}\left(u_{a}^{T} C \gamma^{\mu} \gamma^{5} d_{b}\right)$	1^{-}	$\overline{3}$	$\overline{3}(I=0)$
Axial Vector	$\epsilon_{a b c}\left(u_{a}^{T} C \gamma^{\mu} d_{b}\right)$	1^{+}	$\overline{3}$	$6(I=1)$
	$\epsilon_{a b c}\left(u_{a}^{T} C \sigma^{\mu \nu} d_{b}\right)$	$1^{+}, 1^{-}$	$\overline{3}$	$6(I=1)$
color 6	$\left(u_{a}^{T} C d_{b}\right)+(a \leftrightarrow b)$	0^{-}	6	$6(I=1)$
only in	$\left(u_{a}^{T} C \gamma^{5} d_{b}\right)+(a \leftrightarrow b)$	0^{+}	6	$6(I=1)$
Exotic	$\left(u_{a}^{T} C \gamma^{\mu} \gamma^{5} d_{b}\right)+(a \leftrightarrow b)$	1^{-}	6	$6(I=1)$
Hadrons	$\left(u_{a}^{T} C \gamma^{\mu} d_{b}\right)+(a \leftrightarrow b)$	1^{+}	6	$\overline{3}(I=0)$
	$\left(u_{a}^{T} C \sigma^{\mu \nu} d_{b}\right)+(a \leftrightarrow b)$	$1^{+}, 1^{-}$	6	$\overline{3}(I=0)$

Charmed Baryons: Ground states

\# All the ground-state (S-wave) single charm baryons have been observed, and are consistent with the quark model.
\# Lattice QCD reproduces the ground state baryon spectrum fairly well.
\# Y. Namekawa, et al., (PACS-CS Collaboration) (2+1) flavor with physical quark mass, PRD 87, 094512 (2013)

P-wave excited states

P-wave excited states: from s to c

\# Probabilities of λ and ρ modes \boldsymbol{v}.s. heavy quark mass by a Hamiltonian quark model with spin-spin, spin-orbit and tensor forces
λ mode

ρ mode

Yoshida, et al., ArXiv:1510.01067

From Strangeness to Heavy Quarks

\# For light quarks, $\mathbf{S U}(6) \supset \mathbf{S U}(3)_{f} \times \mathbf{S U}(2)_{s}$ determines the overall structure of the spectrum.
(The spin dependent forces break the $\mathrm{SU}(6)$ symmetry.)
\# The spin dependent forces are suppressed for HQ systems, and the kinetic energy and the confinement force play the central role.
\# The spectrum changes from $\mathrm{SU}(3)$ to HQ symmetry.
\# The heavy baryons can effectively a spectroscopy of light diquarks.

P-wave excited states: from s to c

\# Transition from the $\mathbf{S U (3) _ { f }}$ to HQ spin symmetry. Lattice QCD for $m_{\mathrm{Q}}=\boldsymbol{m}_{\mathrm{S}} \rightarrow \boldsymbol{m}_{\mathrm{C}}$ with $\boldsymbol{m}_{\boldsymbol{\pi}}{ }^{2}=410 \mathrm{MeV}$ P. Gubler, T. T. Takahashi, M.O., to be published

Conclusion

\# What are the REALISTIC degrees of freedom in hadron excited states?
The residences in the 2nd floor ($Q P$)
Colored QP: Constituent quark, gluon, diquark
Colorless QP: low-lying hadrons
\# What are needed experimentally?
Determine quantum numbers
Analyze production, transitions, decay processes
=> need high statistics, new production methods
\# What are needed in theory?
Define QPs in QCD and determine their roles in hadrons
Predict exotic hadrons (mass, quantum numbers)
Bridge Lattice QCD to coupled channel analyses

