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FIG. 1. Mass distributions for w+x n+p events (reaction 1) in 20-MeV bins. (a) ~'p mass distribution, all events
double counted; (b) x+n mass distribution, all events double counted; (c) w+n mass distribution with 6'+ selected
and ~t&@&0.4 GeV; (d) same as (c) but tt&at&0. 1 GeVt.

restricted sample of them later on (Sec. III C). After
the ~" selection we are left with the following:

(1') w'p-w'w d,", 32100 events, ~t» &0 4GeV', .
23400 events, t t~z, &0.1 GeV',

(2') w'p-K'K h", 682 events, t t~at &0.1 GeV',

(3') w'p-w'w w'w L", 2470 events,
~
t'q~ &0.1 GeV,

(4') w'p-w'w MMA", 9600 events,
]'~ &0.1 GeV',

(6') w'p-K'(K')A", 140 events, t~~a &0.1 GeV',
(6') w'p K'K'tt-", 63 events, t t~at &0.1 GeV'.
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FIG. 2. Mass distribution for K'K n+p events (reaction 2) in 30-MeV bins. (a) n+p mass distribution, all events;
(b) K'K mass distribution, all events; (c) K+K mass distribution with b++ selected and ~t&z, ~& 0.1 GeVt.
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FIG. 11. Phases and inelasticities of I =0 s wave and I =1p wave. The crosses are the points calculated from our
data. The horizontal bars of the crosses give size of bins used in the fit to the moments and cross section. The vertical
bars indicate the calculated error at a given mass. These errors are purely statistical and do not reflect possible sys-
tematic effects introduced by extrapolation procedure. The dots correspond to the elastic "down" and "up" solutions of
Baton, Laurens, and Reignier (Ref. 26). The open circles are the results of Baillon et al. (Ref. 27).

ancy is due either to non-n-exchange background
or to our crude estimate of the M7 cross section
(see Sec. III C).
With the parameters obtained from our fit we

can compute the phases and inelasticities. These
are tabulated in Table VI and shown in Figs. 11
and 12 for case 1 (see Table IV). We point out that
the given errors are computed by standard propa-
gation of error and reflect only the statistical er-
rors; they do not reflect the inherent uncertainties
in performing an extrapolation. They should be
considered only as an indication of the minimum
error in our computed values. How accurate our
results really are can only be ascertained by com-
parison with results of an experiment at different
energy with comparable statistics.
For the p-wave phase shift (6,') we obtain the

well-known Breit-Wigner shape (with 6,'=90 at
0.772 GeV, 5,'=45'at 0.703 GeV, and 5,'=135 at
0.863 GeV); the inelasticity (q,') is close to unity
within errors, although by 1.13 GeV it could be as

small as 0.8. The I =0 d-wave phase shift (6,')
around 1 GeV is larger than we would expect for
the f, meson alone. This wave also seems to be
quite inelastic (g,' = 0.80 at 1.070 GeV). This re-
sult has to be viewed with caution because it de-
pends strongly on what is assumed for the f-wave
inelasticity, and non- v-exchange background (or
absorption) may have a substantial effect on these
waves. The effect of the I =2 d wave (6', ) is small;
we can obtain a good fit by setting 5', =0 through-
out. The f-wave phase shift is small and negative
under the p and becomes positive past the wm

threshold. As indicated before, the obtained in-
elasticity is too small to be compatible with the
data in the inelastic channels; we believe that it
is simply acting as a parametrization of back-
ground (or a failure of the extrapolation). What
bearing various effects may have on our results
will be discussed in more detail in Sec. VII.
The most interesting results are the phase shift

and inelasticity of the I =0 s wave. The phase
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	  	  	  	  	  	  	  	  is	  analy3c	  up	  to	  cuts	  and	  poles	  
Cuts:	  	  

right	  hand	  cuts	  due	  to	  unitarity	  
leO	  hand	  cuts	  due	  to	  exchange	  processes	  (crossing)	  

Poles:	  
below	  threshold	  on	  the	  real	  axis:	  bound	  states	  
in	  the	  2nd	  Riemann	  sheet:	  resonances
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The	  la-ce	  approach
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Regulariza3on:	  La-ce	  QCD
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La-ce	  tools:	  correla3on	  func3ons
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Correla3on	  func3ons	  have	  discrete	  energy	  levels!

One	  cannot	  arbitrarily	  fix	  the	  energies:	  they	  are	  eigenvalues	  depending	  
on	  the	  control	  parameters	  (volume,	  couplings,…).

Example:	  	  

Spectral	  density	  of	  a	  simple	  
resonance	  in	  con3nuum	  	  
and	  the	  discrete	  energies	  	  
for	  a	  la-ce	  volume

mπ	  L	  

2.22
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Spectroscopy

11

Ground	  state	  spectroscopy

Is	  correct	  only	  for	  stable	  par3cles.	  
Most	  hadrons	  are	  resonances:	  
We	  need	  to	  study	  excited	  states!

Excited	  states	  spectroscopy
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Compute all cross-correlations for several 
lattice operators

Solve the eigenvalue problem. The 
eigenvalues give the energy levels:

The eigenvectors are “fingerprints” of the 
state and allow to identify the “composition” 
of the state: 
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La-ce	  operators	  (interpolators)	  Xi
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Irreps	  of	  cubic	  group	  and	  its	  liMle	  groups	  contribute	  to	  different	  
angular	  momenta	  in	  con3nuum

Construc3on	  of	  mul3-‐par3cles	  states

Construc3on	  of	  la-ce	  operators	  by	  
projec3on	  from	  con3nuum	  (subduc3on)

Leskovec,	  &	  Prelovsek,	  PR	  D85	  (2012)	  114507	  
Göckeler	  et	  al.,	  PR	  D	  86,	  094513	  (2012)	  

This simple formulation is possible because we have used
the forward-backward derivatives, D

$
.

ð!"D½3$
J13;JD

ÞJ;M ¼
X

m1;m2;m3;m4;m13;mD

h1; m4; JD;mDjJ;Mi

" h1; m2; J13; m13jJD;mDi
" h1; m1; 1; m3jJ13; m13i
" "c!m4

D
$

m1
D
$

m2
D
$

m3
c :

Clearly this procedure can be extended to as many
covariant derivatives as one wishes. In this paper, we will
use operators with up to three derivatives providing access
to all JPC with J ' 4.1

The operators as formed are eigenstates of parity: when
there are an even (odd) number of covariant derivatives, the
parity is equal to (opposite to) that of the local operator
containing the same gamma matrix. The operators are also
eigenstates of charge-conjugation in the case that the c
and "c fields are of the same flavor. In the case that the
fields are degenerate but not identical (e.g., the u and d
quarks in our calculation), the C-parity is trivially gener-
alized to G-parity. For kaons, where the light and strange
quarks are not degenerate, there is no C-parity or any
generalization of it. In this case, the symmetry channels
are labeled by JP and operators of both C can be used.

Subduction into lattice irreps

In lattice QCD calculations, the theory is discretized on
a four-dimensional hypercubic Euclidean grid. The full
three-dimensional rotational symmetry that classifies en-
ergy eigenstates in the continuum is hence reduced to the
symmetry group of a cube (the cubic symmetry group, or
equivalently the octahedral group). Instead of the infinite
number of irreducible representations labeled by spin J, the
single-cover cubic group relevant for integer spin has only
five irreducible representations (irreps): A1; T1; T2; E; A2.
The distribution of the various M components of a spin-J
meson into the lattice irreps is known as subduction, the
result of which is shown in Table III.

To be of any use in lattice computations, the continuum
operators described above must be subduced into lattice
irreps. Noting that each class of operator is closed under
rotations, the subductions can be performed using known
linear combinations of the M components for each J:

O ½J$
#;! ( ð!"D½nD$

... ÞJ#;! ¼
X

M

SJ;M
#;!ð!"D½nD$

... ÞJ;M

(
X

M

SJ;M
#;!O

J;M;

where ! is the ‘‘row’’ of the irrep (1 . . . dimð#Þ). Note that,
althoughO½J$

#;! can have an overlap with all spins contained

within # (as listed in Table III for J ' 4) it still carries the
memory of the J from which it was subduced, a feature we
exploit in Section VI. The subduction coefficients, SJ;M

#;! ,

form an orthogonal matrix,
P

MS
J;M
#;!S

J;M)
#0;!0 ¼ "#;#0"!;!0 ,

and this fixes their normalization.
The subduction coefficients can be constructed in a

number of different ways and here we give a simple
derivation. More details and an alternative method using
a group-theoretic projection formula can be found in
Appendix A.
The simplest case is the subduction of the J ¼ 0 opera-

tor; from Table III, this only subduces into the A1 irrep and
so trivially we have S0;0

A1;1
¼ 1. The J ¼ 1 operator is also

relatively straightforward, only subducing into the T1 irrep
with subduction coefficients shown in Appendix A. Note
that S1;M

T1;!
¼ "!;2*M, where the shift by 2 places ! in the

range 1 . . . dimð#Þ.
Subduction coefficients for all higher spins can be con-

structed by iteration, starting from the J ¼ 0 and J ¼ 1
coefficients and using

S J;M
#;! ¼ N

X

!1;!2

X

M1;M2

SJ1;M1

#1;!1
SJ2;M2

#2;!2
C

# #1 #2

! !1 !2

! "

" hJ1;M1; J2;M2jJ;Mi:

Here hJ1;M1; J2;M2jJ;Mi is the usual SOð3Þ Clebsch-
Gordan coefficient for J1 + J2 ! J and

C
# #1 #2

! !1 !2

! "

is the octahedral group Clebsch-Gordan coefficient for
#1 +#2 ! #. N is a normalization factor, fixed by the
requirement that the subduction coefficients form an or-
thogonal matrix as discussed above. We give explicit val-
ues for the subduction coefficients up to J ¼ 4 in
Appendix A.
In Table IV we show the number of operators we have in

each lattice irrep, i.e., using all operators with up to 3
derivatives. We have performed extensive tests of this
operator set to check that two-point correlators having
operators in differing irreps at source and sink are consis-
tent with zero and that similarly within an irrep, correlators
of differing rows at source and sink are consistent with

TABLE III. Continuum spins subduced into lattice irreps
#ðdimÞ.

J irreps

0 A1ð1Þ
1 T1ð3Þ
2 T2ð3Þ , Eð2Þ
3 T1ð3Þ , T2ð3Þ , A2ð1Þ
4 A1ð1Þ , T1ð3Þ , T2ð3Þ , Eð2Þ

1Except the exotic 4þ*, which requires a minimum of four
derivatives.
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BMW(2008)
HSC(2011,	  2013)

realization of the symmetry above (e.g., [26,27]). For the
purposes of these comparisons, it is helpful to introduce a
spectroscopic notation: X2Sþ1L!J

P, where X is the
Nucleon N or the Delta !, S is the Dirac spin, L ¼
S; P;D; . . . denotes the combined angular momentum of
the derivatives, ! ¼ S, M, or A is the permutational sym-
metry of the derivative, and JP is the total angular momen-
tum and parity. This notation also is used in Table IV,
which we discuss now.

In the negative-parity N# spectrum, there is a pattern of
five low-lying levels, consisting of two N1

2
$ levels, two

N3
2
$ levels, and one N5

2
$ level. The triplet of higher levels

in this group of five is nearly degenerate with a pair of !1
2
$

and !3
2
$ levels. This pattern of Nucleon and Delta levels is

consistent with an L ¼ 1$ P-wave spatial structure with
mixed symmetry, PM . As shown in Table IV, the same
numbers of states are obtained in the SUð6Þ 'Oð3Þ classi-
fication for the negative-parity Nucleon and Delta states

constructed from the ‘‘nonrelativistic’’ Pauli spinors as we
find in the lattice spectra. The lowest two N#$ states are
dominated by operators constructed in the notation of
Eq. (13) as NM ' ðS ¼ 1

2
þÞM ' ðL ¼ 1$ÞM ! JP ¼ 1

2
$

and 3
2
$, while the three higher N#$ levels are dominated

by operators constructed according to NM ' ðS ¼ 3
2
þÞS '

ðL ¼ 1$ÞM with JP ¼ 1
2
$, 3

2
$ and 5

2
$. Similarly, the low-

lying Delta levels are consistent with a !1
2
$ and !3

2
$

assignment. There are no low-lying negative-parity S ¼ 3
2

Delta states since a totally symmetric state (up to antisym-
metry in color) cannot be formed. Consequently, there is no
low-lying !5

2
$, which agrees with the lattice spectrum. In

the nonrelativistic quark model [26], a hyperfine contact
term is introduced to split the doublet and quartet states up
and down, respectively, compared to unperturbed levels
and the tensor part of the interaction provides some addi-
tional splitting. The result is that the doublet Delta states
are nearly degenerate with the quartet Nucleon states as is
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FIG. 11 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at m! ¼ 524 MeV, in units of the
calculated " mass.
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FIG. 12 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at m! ¼ 396 MeV, in units of the
calculated " mass.
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as given in Table I. Thus, the physical ! mass is used to
set the scale. The patterns of these states are very similar
for the different baryons. For the flavor-octet states,
there are two 1

2
! states, two 3

2
! states and one 5

2
! state.

For each baryon, the energy increases with spin J and the
highest energy is about 300 MeVabove the lowest energy,
independent of the baryon. For the flavor-decuplet case,
there is one 1

2
! state and one 3

2
! state with about

70 to 100 MeV splitting, "10 being an exception.

The flavor-singlet case has the same pattern except that
the energies are lower and the splitting is larger.
In a previous analysis of the nucleon spectrum using

Nf ¼ 2 QCD, we obtained five low-lying negative-
parity states in the lattice irreps G1u, Hu and G2u [15].
They could be interpreted as two Nð12!Þ states, two Nð32!Þ
states and one Nð52!Þ state, thus agreeing with the present
work. A later analysis based on Nf ¼ 2þ 1 QCD obtained
a sixth low-lying state, namely a third Nð32!Þ [10]; however
that extra state was not as well determined. Both of the
mentioned works yielded two low-lying Nð12!Þ states, as
does this work. The extra low-lying Nð32!Þ state is not
obtained in this work. We conclude that the third Nð32!Þ
state is spurious, and that the low-lying spectrum has a total
of five negative-parity states, with strong evidence for low-
lying bands consistent with SUð6Þ &Oð3Þ symmetry.
Reference [16] provides the masses of a few low-lying,

negative-parity states of the nucleon based on several pion
masses, including m! ¼ 156 MeV. For m! values close to
400 MeV, there is good agreement with our masses for the
two lowest Nð12!Þ states shown in Fig. 7. Reference [17]
provides masses for several low-lying, negative-parity #
states. Lower pion masses were used in Ref. [17]; however,
for the three lowest #ð12!Þ states obtained at m! '
280 MeV, there is acceptable agreement with our results
at m! ¼ 391, namely for the #1ð12!Þ state in Fig. 8 and the
two #8ð12!Þ states in Fig. 7. Reference [18] also provides
masses for three low-lying#ð12!Þ states at several values of
m! using a larger lattice volume. Those results are reason-
ably consistent with the masses of our three lowest-lying
#ð12!Þ states.
We note that there are several important limitations of

the present study. They have been discussed in Ref. [5] and
we conclude with a brief summary of them. The 163 ( 128
lattice used is small, with spatial dimensions of about
1.9 fm on a side. The pion masses used are significantly
larger than the physical mass. No operators that efficiently
couple onto scattering states (e.g., !N) are included.
Studies of the resonances that correspond to the three-
quark states will require improvements that overcome
each of these limitations.

IV. SUMMARY

This work presents results for baryons based on lattice
QCD using the 163 ( 128 anisotropic lattices that were
developed in Ref. [4]. Excited state spectra are calculated
for baryons that can be formed from u, d and s quarks,
namely the N, $, #, ", % and ! families of baryons, for
two pion masses, 391 MeV and 524 MeV, and at the
SUð3ÞF-symmetric point corresponding to a pion mass of
702 MeV.
The interpolating operators used incorporate covariant

derivatives in combinations that correspond to angular-
momentum quantum numbers L ¼ 0, 1 and 2. The angular

FIG. 8 (color online). The lowest negative-parity states that are
flavor singlets (beige) and decuplets (yellow) are shown for
m! ¼ 391 MeV.

FIG. 7 (color online). The lowest negative-parity states that are
flavor octets are shown for m! ¼ 391 MeV.
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Beyond	  the	  single	  hadron	  approxima3on



C.B. Lang (2015)

Spectroscopy

18

Ground	  state	  spectroscopy
Is	  correct	  only	  for	  stable	  par3cles.	  	  
Single	  hadron	  approach	  	  qqq	  or	  qq	  
is	  valid	  only	  below	  scaMering	  threshold	  
(“bound	  states”	  or	  “ar3ficial	  bound	  states”)

Resonances	  and	  bound	  states

require	  inclusion	  of	  hadron-‐hadron	  
channels	  in	  the	  calcula3on.	  	  
Mul1-‐hadron	  approach:	  we	  need	  to	  extend	  
the	  space	  of	  operators	  to	  mul3-‐hadron	  
operators:	  (qq)(qq),(qqq)(qq),(qqq)(qqq)…
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What	  is	  the	  challenge?

19

More	  quark	  propagators	  
Backtracking	  loops	  are	  
expensive!

“All-‐to-‐all	  propagators”:	  
Stochas3c	  sources	  
Dis3lla3on

Peardon	  et	  al.	  (HSC),	  PR	  D	  80,	  054506	  (2009).	    
Morningstar	  et	  al.,	  PR	  D	  83,	  114505	  (2011).	    

More	  terms
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V = const. � = 0

Cf.,	  2d	  resonance	  example:	  
GaMringer	  &	  cbl,	  NPB391	  (93)	  463

Lüscher,	  CMP	  105(86)	  153,	  
NP	  B354	  (91)	  531,	  NP	  B	  364	  (91)	  237 periodic	  b.c.

V

⟨x⟩q

Jq = Lq +
1

2
∆Σq

purely disc. is

∆Σs =

∫ 1

0

dx (∆Σs(x) +∆Σ
s
(x))

π γ∗ → ρ→ ππ

ρ→ πγ

ρ→ πγ∗

⟨πout|J
µ|ππin, ℓ = 1⟩

⟨πout,Λπ|J
µ|ππin,Λππ⟩

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩ =
∑

n

⟨Xi|n⟩ e
−tEn ⟨n|Xj⟩

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩

C(t) = 1.05 e−0.25 t

C(tn) = 1.05 e−0.25 t + 0.78 e−0.55 t + 0.54 e−0.85 t + . . .+ noise

Xi

ei k L = 1

kn = 2n π/L

5

⟨x⟩q

Jq = Lq +
1

2
∆Σq

purely disc. is

∆Σs =

∫ 1

0

dx (∆Σs(x) +∆Σ
s
(x))

π γ∗ → ρ→ ππ

ρ→ πγ

ρ→ πγ∗

⟨πout|J
µ|ππin, ℓ = 1⟩

⟨πout,Λπ|J
µ|ππin,Λππ⟩

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩ =
∑

n

⟨Xi|n⟩ e
−tEn ⟨n|Xj⟩

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩

C(t) = 1.05 e−0.25 t

C(tn) = 1.05 e−0.25 t + 0.78 e−0.55 t + 0.54 e−0.85 t + . . .+ noise

Xi

ei k L = 1

kn = 2n π/L

5

(e.g.	  for	  L=3	  fm:	  
k1=400	  MeV)

(in	  the	  elas3c	  region)
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V

V = localized � 6= 0

ei k L+2iδ(k) = 1

2 δ(k) = 2n π − kn L

n

t−1 =

{

k−1 − ip for p2 > 0
k−1 + |p| for p2 < 0

Re(t−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

k−1 = p cot δ(p) for p2 > 0

k−1 ≈
1

a0
+

1

2
r0p

2 for p2 ≈ 0

det
[

T−1 − Z
]

= 0

Ensemble (1) Ensemble (2) exp
mπ = 266 MeV mπ = 157 MeV

ψ(3770)
mR [GeV] 3.774(6)(10) 3.789(68)(10) 3.77315(33)
g (no unit) 19.7(1.4) 28(21) 18.7(1.4)
ψ(2S)

mB [GeV] 3.676(6)(9) 3.682(13)(9) 3.686109+12
−14

6

ρ→ πγ∗

⟨πout|J
µ|ππin, ℓ = 1⟩

⟨πout,Λπ|J
µ|ππin,Λππ⟩

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩ =
∑

n

⟨Xi|n⟩ e
−tEn ⟨n|Xj⟩

Xi

n

t−1 =

{

k−1 − ip for p2 > 0
k−1 + |p| for p2 < 0

Re(t−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

k−1 = p cot δ(p) for p2 > 0

k−1 ≈
1

a0
+

1

2
r0p

2 for p2 ≈ 0

det
[

T−1 − Z
]

= 0

Ensemble (1) Ensemble (2) exp
mπ = 266 MeV mπ = 157 MeV

ψ(3770)
mR [GeV] 3.774(6)(10) 3.789(68)(10) 3.77315(33)
g (no unit) 19.7(1.4) 28(21) 18.7(1.4)
ψ(2S)

mB [GeV] 3.676(6)(9) 3.682(13)(9) 3.686109+12
−14

2 δ(kn) = 2nπ − knL

5
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From	  energy	  levels	  to	  phase	  shiOs	  

22

ei k L+2iδ(k) = 1

2 δ(k) = 2n π − kn L

n

t−1 =

{

k−1 − ip for p2 > 0
k−1 + |p| for p2 < 0

f−1 =

{

k−1 − iρ(p) for p2 > 0
k−1 + |ρ(ip) for p2 < 0

Re(t−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

Re(f−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

k−1 = ρ cot δ(p) for p2 > 0

k−1 ≈
1

a0
+

1

2
r0p

2 for p2 ≈ 0

det
[

T−1 − Z
]

= 0

Ensemble (1) Ensemble (2) exp
mπ = 266 MeV mπ = 157 MeV

ψ(3770)
mR [GeV] 3.774(6)(10) 3.789(68)(10) 3.77315(33)
g (no unit) 19.7(1.4) 28(21) 18.7(1.4)
ψ(2S)

mB [GeV] 3.676(6)(9) 3.682(13)(9) 3.686109+12
−14

6

Sℓ = 1 + 2i ρ fℓ = e2i δℓ

SS† = 1

|S| = 1

(s = E2
cms)

f−1
ℓ (s) = ρ(s) cot δℓ(s)− i ρ(s)

ρ(s)

f−1
ℓ (s) = 0

⟨p|Γ|n⟩

G3 = ⟨0|Op(t, p⃗)|Γ(τ)|Op(0, r⃗)|0⟩

⟨0|Op(t, p⃗)|H(p⃗)⟩
e−Ep(t−τ)

2Ep

⟨H(p⃗)|Γ(τ)|H(r⃗)⟩
e−Erτ

2Er

⟨H(r⃗)|Op(0, r⃗)|0⟩

G2 = ⟨0|Op(t, q⃗)Op(0, p⃗)|0⟩

⟨0|Op(t, p⃗)|H(p⃗)⟩
e−Ept

2Ep

⟨H(p⃗)|Op(0, r⃗)|0⟩

p⃗

r⃗

q⃗ = p⃗− r⃗

q⃗

cancellation of factors

RΓ(t, τ, q⃗) = G3/G2×

→ ⟨H(p⃗)|Γ(τ)|H(r⃗)⟩

further factors e.g.
⟨p|Γ|n⟩

2

(in	  the	  elas3c	  
region)

Energy	  levels	  En	  →	  
ρ	  cot	  δ	  →	  δ(En)
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further factors e.g.
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2

“Lüscher	  curves”

p2

Z00

E6E5E4E3E2E1

Nucleon excited states Results Summary

Phase shift analysis

Asymptotically only stable states can be observed and resonances
have to be identified by their impact on the finite volume states.

Luescher formula connects the discrete spectrum in finite volume
with the scattering phase shift in infinite volume

det[e2i�(M(q)� i)� (M(q) + i)] = 0

(in	  the	  elas3c	  
region)

Energy	  levels	  En	  →	  
ρ	  cot	  δ	  →	  δ(En)
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further factors e.g.
⟨p|Γ|n⟩
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Nucleon excited states Results Summary

Phase shift analysis

Asymptotically only stable states can be observed and resonances
have to be identified by their impact on the finite volume states.

Luescher formula connects the discrete spectrum in finite volume
with the scattering phase shift in infinite volume

det[e2i�(M(q)� i)� (M(q) + i)] = 0

(in	  the	  elas3c	  
region)

Energy	  levels	  En	  →	  
ρ	  cot	  δ	  →	  δ(En)
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ei k L+2iδ(k) = 1

2 δ(k) = 2n π − kn L

n

t−1 =

{

k−1 − ip for p2 > 0
k−1 + |p| for p2 < 0

f−1 =

{

k−1 − iρ(p) for p2 > 0
k−1 + |ρ(ip) for p2 < 0

Re(t−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

Re(f−1) − cZ00

(

1;

(

pL

2π

)2
)

= 0

k−1 = ρ cot δ(p) for p2 > 0

k−1 ≈
1

a0
+

1

2
r0p

2 for p2 ≈ 0

det
[

T−1 − Z
]

= 0

Ensemble (1) Ensemble (2) exp
mπ = 266 MeV mπ = 157 MeV

ψ(3770)
mR [GeV] 3.774(6)(10) 3.789(68)(10) 3.77315(33)
g (no unit) 19.7(1.4) 28(21) 18.7(1.4)
ψ(2S)

mB [GeV] 3.676(6)(9) 3.682(13)(9) 3.686109+12
−14

6

Sℓ = 1 + 2i ρ fℓ = e2i δℓ

SS† = 1

|S| = 1

(s = E2
cms)

f−1
ℓ (s) = ρ(s) cot δℓ(s)− i ρ(s)

ρ(s)

f−1
ℓ (s) = 0
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e−Erτ

2Er

⟨H(r⃗)|Op(0, r⃗)|0⟩

G2 = ⟨0|Op(t, q⃗)Op(0, p⃗)|0⟩
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RΓ(t, τ, q⃗) = G3/G2×
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⟨p|Γ|n⟩
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Nucleon excited states Results Summary

Phase shift analysis

Asymptotically only stable states can be observed and resonances
have to be identified by their impact on the finite volume states.

Luescher formula connects the discrete spectrum in finite volume
with the scattering phase shift in infinite volume

det[e2i�(M(q)� i)� (M(q) + i)] = 0

(in	  the	  elas3c	  
region)

resonance

Energy	  levels	  En	  →	  
ρ	  cot	  δ	  →	  δ(En)
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Table 3
Energy levels for J P = 0+ (upper set), 1+ (middle set) and 2+ (lower set). A correlated 2-exponential fit is used and m̄ = 1

4 (mBs + 3mB∗
s
) with m̄ = 1.62897(43) in lattice 

units. t0 denotes the reference point in the generalized eigenvalue problem. Energy 2 in the middle set corresponds to the B∗
s1(5830). The lower set shows the naive energy 

level for the J P = 2+ and corresponds to the B∗
s2(5840) using the same operator basis used in [10] for the D∗

s2.

Level t0 Basis Fit range χ2

d.o.f Ea E − m̄ [GeV] (ap)2 ap cot(δ) p2 [GeV2] p cot(δ) [GeV]

1 2 O 1,2,4,5,7 4–16 0.53 1.7735(44) 0.315(9) −0.0128(19) −0.106(10) −0.0606(88) −0.231(23)

2 2 O 1,2,4,5,7 4–16 1.05 1.8213(29) 0.419(6) 0.0066(13) −0.116(18) 0.0312(62) −0.252(40)

3 2 O 1,2,4,5,7 3–13 1.35 1.9139(59) 0.620(13) 0.0535(35) −0.045(76) 0.2532(165) −0.097(166)

1 2 O 3,4,6,9,11 4–14 0.67 1.7919(51) 0.353(11) −0.0141(22) −0.113(11) −0.067(11) −0.246(25)

2 2 O 3,4,6,9,11 3–14 0.85 1.8255(42) 0.428(9) – – – –
3 2 O 3,4,6,9,11 3–14 0.54 1.8395(45) 0.457(10) 0.0050(24) −0.142(49) 0.024(11) −0.308(106)

4 2 O 3,4,6,9,11 3–14 1.19 1.9406(50) 0.677(11) 0.0566(31) 0.021(67) 0.268(15) 0.046(145)

1 2 O 1,2 4–14 0.43 1.8357(51) 0.450(11) – – – –

Fig. 1. Plot of ap cot δ(p) vs. (ap)2 for BK scattering in s-wave. Circles are values 
from our simulation; solid lines (red in the web version of the article) following the 
Lüscher curves (broken lines) indicate the error band. The full line gives the linear 
fit (3) to the points. Below threshold |p| is added and the zero of the combination 
(4) indicates the bound state position in infinite volume. Displayed uncertainties are 
statistical only.

where we assume that the closeness of the BKπ threshold can be 
ignored for our simulation. All operators are built according to the 
distillation method from quark sources that are eigenvectors of the 
spatial Laplacian, providing a smearing with a Gaussian-like enve-
lope. The gauge links are four-dimensional normalized hypercubic 
(nHYP) smeared [47].

We omit B(∗)
s π interpolators since we work in the isospin limit 

where such decays cannot occur. We also neglect B(∗)
s η, partially 

motivated by the threshold lying O(140 MeV) above the B(∗)K
threshold. Inclusion would necessitate a coupled channel study 
which would need several volumes and considerably complicate 
the calculation.

As in earlier experience it turned out that the full set of op-
erators gave noisier signals than suitable subsets so for the final 
analysis we use the operator set (1, 2, 4, 5, 7). The energy values 
resulting from correlated 2-exponential fits to the eigenvalues are 
given in Table 3.

In this channel B and K are in s-wave. If there is a bound state 
one expects an eigenstate with energy approaching the bound 
state energy from below in the infinite volume limit. The levels 
above threshold then would be dominated by BK operators with 
back-to-back momenta. This is exactly what is seen from the over-
lap ratios: The lowest level is dominated by operators 1, 2 and 4, 
level 2 by the B(0)K (0) operator 5 and level 3 by the B(1)K (−1)

operator 7.
As shown in (3) we can use the values of p cot δ(p) from 

Lüscher’s relation to determine the effective range parametrization 
near threshold. The energy eigenvalues give the points shown in 
Fig. 1 together with a linear fit. The value and slope at threshold 
can be related to the scattering length and effective range:

Table 4
Systematic uncertainties in the mass determination of the below-threshold 
states with quantum numbers J P = 0+, 1+ . The heavy-quark discretization 
effects are quantified by calculating the Fermilab-method mass mismatches 
and employing HQET power counting [34] with % = 700 MeV. The dominant 
contributions arise from mismatches in mB and mE and their size as a frac-
tion of the reference scale % can be seen in Fig. 3 of [34]. The finite volume 
uncertainties are estimated conservatively by the difference of the lowest en-
ergy level and the pole position (see also Equations (9) and (28) of [48]). 
The last line gives the effect of using only the two points near threshold for 
the effective range fit. The third point might be affected more strongly by the 
B(∗)

s η threshold, so it is reassuring that the difference in results between two-
point and three-point fits is minimal. The total uncertainty has been obtained 
by adding the single contributions in quadrature.

Source of uncertainty Expected size [MeV]

heavy-quark discretization 12
finite volume effects 8
unphysical Kaon, isospin & EM 11
b-quark tuning 3
dispersion relation 2
spin-average (experiment) 2
scale uncertainty 1
3 pt vs. 2 pt linear fit 2

total 19

aBK
0 = −0.85(10) fm , rBK

0 = 0.03(15) fm . (6)

Equation (4) gives the bound state position. From this the bind-
ing energy is estimated to be mB + mK − mBs0 =64(13)(19) MeV; 
thus, using the physical threshold as input to minimize systematic 
effects, we predict a bound state Bs0 with J P = 0+ at a mass of

mBs0 = 5.711(13)(19) GeV . (7)

The first error is due to statistics and the effective range fit, and 
the second value is our estimate for the systematic error with the 
main contributions due to heavy quark discretization, unphysical 
Kaon mass, and finite volume effects. Details of this uncertainty 
estimate are provided in Table 4.

For J P = 1+ we computed cross-correlations between eight s̄b
(in the form given in Table XIII of [10]) and three B∗K (irrep T +

1 ) 
operators:

O 9 ≡ O B∗ K
1,k = [s̄γ5u] (p⃗ = 0) [ūγkb] (p⃗ = 0) + {u → d} ,

O 10 ≡ O B∗ K
2,k = [s̄γtγ5u] (p⃗ = 0) [ūγtγkb] (p⃗ = 0) + {u → d} ,

O 11 ≡ O B∗ K
3,k =

∑

p⃗=±ex,y,z 2π/L

[s̄γ5u] (p⃗) [ūγkb] (−p⃗) + {u → d} .

Comparing various subsets of operators the most stable set was 
(3, 4, 6, 9, 11), where four energy levels could be determined (Ta-
ble 3).

Based on the overlaps, levels 3 and 4 are dominated by opera-
tors 9 (B∗(0)K (0)) and 11 (B∗(1)K (−1)), respectively. The lowest 

Predic3ng	  posi3ve	  parity	  Bs	  
mesons	  from	  la-ce	  QCD	  
CBL,	  Mohler	  et	  al.,	  Physics	  
LeMers	  B	  750	  (2015)	  17

Example:	  DK	  scaMering	  in	  JPC=0++	  near	  threshold

1 2 4 5 7

b
˜
s b

˜
s b

˜
s B(0)K(0) B(1)K(-1)

state	  composi3on

Bound	  state	  Bs0	  with	  	  	  
m(Bs0)	  =	  5.711(13)(19)	  GeV	  

(EB=64(13)(19)	  MeV)



C.B. Lang (2015)

How	  to	  get	  more	  points?

24

Low	  lying	  levels	  have	  smaller	  sta3s3cal	  errors

Several	  volumes	  (expensive)

Moving	  frames	  (operators	  with	  
momentum)

Modified	  boundary	  condi3ons

t

V2V1 V3

2 3 4 5 6
2

3

4

5

6

2 3 4 5 6
2

3

4
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Example:	  ππ	  ➛	  ρ	  ➛	  ππ

2828

CBL, Mohler, Prelovsek, Vidmar; 
PR D 84, 054503 (2011)
Erratum PR D 89 (2014) 059903(E)

Up to 18 ρ and ππ operators
P=(000), (001), (011)

2011

p
s�(s) cot �(s) = m2

⇢ � s

gρππ ¼ 5.61ð12Þ; mρa ¼ 0.4846ð37Þ; mρ ¼ 772ð6Þð8Þ MeV: (1)

These results agree within error with the results based on the continuum dispersion relation that were presented in the
paragraph after Eq. (41).

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

-0.2

-0.1

0

0.1

0.2

(p
*3 /s

1/
2 ) c

ot
 δ

data with lattice d.r.
gρππ = 5.64(19); mρ = 0.5035(45)

data with continuum d.r.
gρππ = 5.61(12); mρ = 0.4846(37)

χ2
/d.o.f. = 7.42/3

χ2
/d.o.f. = 8.42/3

χ2
/d.o.f. = 12.91/3

χ2
/d.o.f. = 11.01/3

FIG. 2 (color online). Data for ððap$Þ3=
ffiffiffiffiffiffiffi
sa2

p
Þ cot δðsÞ as a function of sa2, fitted to straight line behavior. We also include data using

the lattice dispersion relation to allow for a comparison with the previously published results.

ERRATA PHYSICAL REVIEW D 89, 059903(E) (2014)

059903-2
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Extension	  to	  several	  coupled	  channels	  

Briceno	  et	  al	  .,	  PR	  D	  88,	  034502	  (2013)
Briceno	  et	  al	  ,	  PR	  D	  88,	  094507	  (2013)
Briceno	  et	  al	  .,	  PR	  D	  89,	  074507	  (2014)

Briceno	  et	  al.,	  PR	  D	  91,	  034501	  (2015)

two	  nucleons
moving	  mul3channels
arbitrary	  spin

1	  ➞	  2	  transi3ons

Cij(t) ≡ ⟨Xi(t)Xj(0)⟩ =
∑

n

⟨Xi|n⟩ e
−tEn ⟨n|Xj⟩

Xi

n

t−1 =

{

k−1 − ip for p2 > 0
k−1 + |p| for p2 < 0

Re(t−1) − cZ00

(

1;
(

pL

2π

)2
)

= 0

k−1 = p cot δ(p) for p2 > 0

k−1 ≈
1

a0
+

1

2
r0p

2 for p2 ≈ 0

det
[

T−1 − Z
]

= 0

5

Bernard	  et	  al	  .,	  JHEP	  1101	  (2011)	  019	  [arXiv:1010.6018]

Hansen	  &	  Sharpe,	  PR	  D86	  (2012)	  016007[arXiv:1204.0826]

“..to	  boldly	  go,	  where..”

Matrices	  T,	  Z:
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N atm g a2

t �0 a2

t �1 a2

t �2 �2/N
dof

– 0.13172(36) 0.4475(52) – – – 27.0/(22� 2) = 1.3
0 0.13164(36) 0.4611(66) 5.4(17) – – 16.8/(22� 3) = 0.88
1 0.13161(37) 0.4677(82) �3.3(67) 2.6(22) – 15.6/(22� 4) = 0.86
2 0.13165(37) 0.4679(89) �21.5(74) 16.6(24) �2.4(4) 14.8/(22� 5) = 0.87

TABLE III. K-matrix descriptions of the elastic spectrum using Eq. 5.
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FIG. 10. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curves illustrate the K-matrix descrip-
tions given in Table III, plus a K-matrix description using
the simple phase-space, ⇢, in place of the Chew-Mandelstam
function.

leading partial-wave, and we have determined one low-
lying energy level in each, as shown in Fig. 5. Us-
ing Eq. 1 to obtain the phase-shift, under the reason-
able assumption that higher partial-waves are negligible,
we find �⇡⇡

3

= (0.45 ± 0.60 ± 0.28)� from the point at
a
t

Ecm = 0.14763(51) in [100]B
1

. The level at a
t

Ecm =
0.18712(53) in [100]B

2

, which is slightly outside the elas-
tic region, yields a phase-shift of �⇡⇡

3

= (�0.2±1.6±1.8)�.
It is clear that the F -wave is negligibly small at low en-
ergies.

We may repeat the analysis described above to deter-
mine the P -wave scattering amplitude, also allowing a
non-zero F -wave amplitude to influence the spectrum.
A description of the 22 levels described previously plus
the [100]B

1

level, using a Breit-Wigner to describe the
P -wave and a scattering length parameterization for the
F -wave, k7 cot �

3

= 1/a
3

, yields a
3

= 19(14)⇥ 105 a7
t

, or
m7

⇡

· a
3

= 27(20) ⇥ 10�5, and P -wave Breit-Wigner pa-
rameters statistically compatible with those given above.
K-matrix variations produce similar results, with the F -
wave amplitude always being compatible with zero.

B. Coupled-channel ⇡⇡, KK scattering

We now consider the coupled-channel region above
KK threshold, where ⇡⇡ ! KK is expected to be the
first significant source of inelasticity. Although we will
use levels which lie above the 4⇡ and ⌘⇡⇡ thresholds,
we will not consider those to be open channels. We
expect the scattering amplitudes featuring these chan-
nels to be very small in the near-theshold energy region
– experimental support for this assertion comes from
the measured cross-sections for e+e� ! 4⇡ [39] and
e+e� ! ⌘⇡⇡ [40], neither of which has any significant
value until at least 300 MeV above threshold, likely due
to the dominance of meson-meson isobars in the ampli-
tudes. Our expectation is that if we were to include
operators resembling 4⇡ and/or ⌘⇡⇡ into our basis, we
would extract additional energy levels very close to non-
interacting levels corresponding to weak scattering am-
plitudes, decoupled from the ⇡⇡, KK channels that we
consider. These non-interacting levels will lie somewhat
above the corresponding thresholds. The formalism to
understand three-body and higher multiplicity scattering
amplitudes is not yet complete, although recent progress
is promising [17, 19, 20].
We consider coupled-channel K-matrices like those de-

scribed in Ref. [16], using Eq. 4 to define the t-matrix and
K

ij

being a 2⇥ 2 matrix. A particularly useful form for
K is

K
ij

(s) =
g
i

g
j

m2 � s
+

NX

n=0

�
(n)

ij

✓
s

s
0

◆
n

, (6)

where the explicit pole in the first term is an e�cient
way of obtaining a coupled-channel pole in the t-matrix.
While this parameterization permits a pole to occur in
the complex energy plane, it is the description of the fi-
nite volume energy levels which determines whether or
not this pole occurs close to the real axis and is thus
relevant. We use the Chew-Mandelstam form for the
phase space, subtracted at the pole position so that
Re I

i

(s = m2) = 0.
We make use of a total of 34 energy levels, shown by

the black points in Figures 3 and 4. Four of these states
show a significant overlap with a KK operator, whilst
the remaining levels in the coupled-channel region dom-
inantly overlap with ⇡⇡ operators. This corresponds to
using all energy levels below a

t

Ecm = 0.22, or below the
the first unknown “⇡⇡” level, whichever is lowest. This
spectrum can be described by the K-matrix of Eq. 6,
with N = 0, with parameters
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FIG. 1. The upper panel shows the I = 1 ⇡⇡ phase shift ob-
tained from the lattice QCD spectrum determined at m⇡ =
236 MeV as a function of the c.m. energy. The band corre-
sponds to the SU(2) U�PT fit. The dashed line shows the 4⇡
threshold. We do not show two noisy energy levels.

where µ is the renormalization scale. We define f0 such
that the left hand side coincides with the physical value
of the decay constant.

To perform a chiral extrapolation we must deter-
mine the lattice spacing. We use two definitions of
the lattice spacing. First, we use the ⌦ baryon mass,
which has been determined to be atmlatt.

⌦ = 0.2789(16)
at these quark masses [8]. By setting this equal to
atm

phys.
⌦ (mphys.

⌦ = 1672.45(29) MeV is the mass of

physical ⌦ baryon) we obtain the lattice spacing a[1]
t =

0.1668(10) GeV�1. Second, we perform an extrapolation
to the physical point of the lattice ⌦ baryon mass us-

ing m⌦(m⇡) = m⌦,0 + ↵ m2
⇡

m2
⌦

+ � m4
⇡

m4
⌦

determined for four

di↵erent values of atm⇡
atm⌦

2 [0.14 � 0.33] [8, 61]. We find

a[2]
t = 0.1630(14) GeV�1 with a �2/d.o.f. = 0.52. As-

suming that a[1]
t should coincide with a[2]

t , we perform all
fits using both of these lattice spacings and any deviation
of the result is incorporated into the systematic error. All
central values below are obtained using the mean value

of a[1]
t . As is shown below, this 2% error is the largest

source of uncertainty in our final result. This systematic
error is improvable.

Having 22 energy levels at a single quark mass and
spatial volume, we are able to fit the two unknown low-
energy coe�cients. The fit results in �2/Nd.o.f. = 1.26
for SU(2) U�PT and is shown in Fig. 1 compared to the
lattice determined phase shifts. The phase shift is plotted
as a function of the c.m. ⇡⇡ energy, E?

⇡⇡. The low-energy
coe�cients and correlations are found to be

↵1(770 MeV) = 14.7(4)(2)(1) ⇥ 10�3

1 �0.98

1

�

↵2(770 MeV) = �28(6)(3)(0111) ⇥ 10�3 (4)

The first uncertainty is statistical, the second is the sys-
tematic due to the determination of the ⇡ mass and the
anisotropy of the lattice 4, and the third is an estimate
of the systematic due to the determination of the lattice

4
The ⇡ mass was determined in lattice units to be atm⇡ =

FIG. 2. I = 1 ⇡⇡ phase shifts at three pion masses. In red
we show the lattice-determined phase shifts, along with the
SU(2) U�PT fit to the spectrum atm⇡ = 236 MeV. The green
band shows the extrapolation to the experimental pion mass.
In blue we show the discrete points from the lattice calcula-
tion at m⇡ = 391 MeV [26] and the extrapolation from the
parameters determined from this 236 MeV fit. The extrap-
olated bands include both statistical and systematic errors
discussed in the text.

spacing. The symmetric matrix on the right of the co-
e�cients denotes the statistical correlation between the
two. By analytically continuing the scattering amplitude
to the complex plane we obtain the resonance pole at
these quark masses E⇢ = 782(2) � i

2 85(2) MeV with a
width, �⇢ ⌘ �2 Im(E⇢) = 85(2) MeV. We observe good
agreement with the result from the Hadron Spectrum col-
laboration where the poles were determined using other
parameterizations of the scattering amplitude. This em-
phasizes the fact that the lattice QCD spectrum properly
constrains the scattering phase shift independently of the
parameterization chosen.

The power of the U�PT amplitude is that it allows
one to extrapolate these quantities as a function of pion
mass. In Fig. 2 we show the result of this exercise using
the mean values of the coe�cients in Eq. 4 and propa-
gating both statistical and systematic uncertainties. We
show the postdiction for m⇡ = 140 MeV and m⇡ = 391
MeV, where an earlier calculation also extracted the ⇡⇡
scattering amplitude containing the ⇢ resonance [26]. We
emphasize that in Ref. [45] it is clearly explained that
U�PT is not expected to reliably describe lattice QCD
results above m⇡ ⇠ 300 � 350 MeV. Despite this formal
constraint and the slight deviation at m⇡ = 391 MeV
from the lattice results, U�PT produces phase shifts that
resemble both experimental and lattice determinations as
a function of m⇡.

In Fig. 3 we present our final result for the chiral ex-
trapolation of the ⇡⇡ phase shift using SU(2) U�PT.
The result include a propagation of statistical and sys-
tematic uncertainties. The largest uncertainty is due to
the determination of the lattice spacing, where we aim

0.03928(18). The anisotropy of that lattice is defined as ⇠ =

as/at where as and at are the lattice spacings in the spatial and

temporal extents. The anisotropy has been determined to be

⇠ = 3.4534(61).

extrapola3on	  to	  the	  
physical	  point
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FIG. 15. Elastic Breit-Wigner fit of Figure 8 with the lattice
spacing set as described in the text.

FIG. 16. Elastic P -wave ⇡⇡ isospin=1 phase shifts for pions
of mass ⇠ 391 MeV (blue) and ⇠ 236 MeV (red). Curves
correspond to two parameter Breit-Wigner fits as described
in the text and summarized in Table III.

ing phase-shifts are shown in Fig. 16. We note that the
Breit-Wigner couplings g

R

show good agreement between
the two di↵erent quark masses, as has been suggested
in unitarized versions of chiral perturbation theory [42].
The apparent di↵erence in the pole residue coupling, c

⇡⇡

,
is completely explicable in terms of the P -wave barrier
– since the t-matrix near threshold must behave like
t(s) ⇠ k2, we may consider c

⇡⇡

= c̃
⇡⇡

k(s
0

) where k(s
0

) is
the cm-frame momentum at the pole position. It follows
that ����

c391
⇡⇡

c236
⇡⇡

���� = 0.56(2)

=

����
c̃391
⇡⇡

c̃236
⇡⇡

����

����
k391

k236

����

=

����
c̃391
⇡⇡

c̃236
⇡⇡

����

����
173� 7.7i

312� 26.6i

����

=

����
c̃391
⇡⇡

c̃236
⇡⇡

���� 0.552,

and thus |c̃391
⇡⇡

| ⇡ |c̃236
⇡⇡

|.

This work Ref. [22]

atm⇡ 0.03928(18) 0.06906(13)
atmR 0.13175(35)(5) 0.15095(14)(4)

gR 5.688(70)(26) 5.698(97)(3)

m⇡ 236(2) MeV 391(1) MeV
mR 790(2) MeV 855(1) MeV

Re(
p
s
0

) 783(2) MeV 853(2) MeV
�2 Im(

p
s
0

) 85(2) MeV 12.4(6) MeV
|c⇡⇡| 288(4) MeV 162(4) MeV

Arg(c⇡⇡) �0.059(1)⇡ �0.033(1)⇡

�2/N
dof

24.9
22�2

= 1.25 28.7
31�2

= 0.98

TABLE V. A comparison of the results of this study and
ref. [22]. These numbers compare the Breit-Wigner descrip-
tion only and the quoted pole is from that single parameteri-
zation.

IV. SUMMARY

The ⇢ resonance was extracted using a detailed spec-
trum of lattice QCD energy levels working in a (⇠ 4 fm)3

cubic volume with a pion mass of 236 MeV. Using the
variational method and a large diverse basis of operators,
energy levels were obtained in the elastic ⇡⇡ scattering
region and the near-threshold coupled-channel ⇡⇡�KK
energy region and these were used to constrain the I = 1
JP = 1� and JP = 3� scattering amplitudes. By
making use of the formalism relating the elastic and
coupled-channel scattering amplitudes to the spectrum
of eigenstates in a finite volume, we were able to extract
phase-shifts and inelasticity for the coupled ⇡⇡ � KK
system. The elastic region was found to feature a nar-
row resonance, which persists when the coupled KK
channel is also considered. A range of t-matrix param-
eterizations lead to consistent resonance parameters in
the sense of a pole in the complex energy plane. Us-
ing the ⌦ baryon to set the scale this pole is located atp
s
⇢

=
�
783(2)� i

2

90(8)
�
MeV. A simple Breit-Wigner

description of the elastic amplitude works well and gives
a coupling that is consistent with the value determined at
a larger pion mass and that extracted from experimental
data.

In a coupled-channel analysis we found the ⇡⇡ �KK
system to be only weakly coupled for the range of energies
we considered, and only small phase-shifts were observed
in the KK channel. This is only the second example
of the extraction of a coupled-channel scattering matrix
from lattice QCD, following the earlier study of ⇡K, ⌘K
[15, 16]. This first exploratory study aboveKK threshold
neglected three- and four-hadron contributions that have
been observed to be suppressed in experimental studies.
Progress in the development of a finite-volume formalism

Exp/BW	  
CBL	  et	  al.(2011)	  
Dudek	  et	  al.(2013)	  
Wilson	  et	  all.	  (2015)
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FIG. 2: The extracted K π scattering phase shifts δIℓ in all four channels l = 0, 1 and I = 1/2, 3/2. The phase shifts are
shown as a function of the Kπ invariant mass

√
s = MKπ =

√

(pπ + pK)2. Our results (red circles) apply for mπ ≃ 266 MeV
and mK ≃ 552 MeV in our lattice simulation. In addition to the phases provided in four plots, we also extract the values of
δ1/2, 3/2
0

near threshold
√
s = mπ+mK , but these are provided in the form of the scattering length in the main text (as they are

particularly sensitive to mπ,K). Our lattice results are compared to the experimental elastic phase shifts from Estabrooks (black
pluses) [11] and Aston (blue stars) [12]. Dark green crosses represent measured phase shifts by Aston [12] which correspond
to an almost elastic amplitude T I

ℓ , i.e., 0.85 < |2T I
ℓ − i| < 1.15 (see Section IA). Lattice phase shifts are determined up to

multiples of 180◦ from Eq. (8).

7c. We omitted8 the backtracking box contraction 7c in
[85, 86] and the simulation rendered an additional state
near K(0)π(0) which was attributed to κ with a sizable
tetraquark Fock component in [85, 86]. The effect of
box contraction 7c in our present simulation is shown
in Fig. 6, where the spectrum is calculated using only
(q̄q)(q̄q) interpolators O5,7,8 (see (A6)); these are simi-
lar to O1,2,3 used in [85, 86]. There is only one energy

8 First reason for this omission was the numerical cost. The sec-
ond reason had physical motivation of artificially prohibiting the
mixing q̄qq̄q → q̄q → q̄qq̄q, so that a q̄qq̄q Fock component could
be attributed to the resulting state.

state below E = 1 GeV when all necessary contractions
(7a and 7c) are incorporated, which agrees with the re-
sult in Fig. 1 and with our conclusions above. However,
if the backtracking box contraction 7c is neglected, an
additional energy level near K(0)π(0) appears. A proper
quantum field theory treatment requires incorporation of
all Wick contractions, so the additional level seems to be
an artifact of the approximation used in [85, 86]. This
interesting observation may be fruitful in trying to un-
derstanding the physics of light scalar mesons in future
explorations.
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[85, 86] and the simulation rendered an additional state
near K(0)π(0) which was attributed to κ with a sizable
tetraquark Fock component in [85, 86]. The effect of
box contraction 7c in our present simulation is shown
in Fig. 6, where the spectrum is calculated using only
(q̄q)(q̄q) interpolators O5,7,8 (see (A6)); these are simi-
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be attributed to the resulting state.

state below E = 1 GeV when all necessary contractions
(7a and 7c) are incorporated, which agrees with the re-
sult in Fig. 1 and with our conclusions above. However,
if the backtracking box contraction 7c is neglected, an
additional energy level near K(0)π(0) appears. A proper
quantum field theory treatment requires incorporation of
all Wick contractions, so the additional level seems to be
an artifact of the approximation used in [85, 86]. This
interesting observation may be fruitful in trying to un-
derstanding the physics of light scalar mesons in future
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Figure 1: The p-wave scattering phase shift dl=1, I = 1/2 as a function of EKp ⌘
p

s. Different col-
ors/symbols indicate results from different irreducible representations, while the point at EKp ' 1.34 GeV,
obtained by taking into account d1,2 mixing, is indicated by black dot. Note that three points (circle, triangle
and diamond) near

p
s ' 0.91 GeV are overlapping. The dashed line represents a fit over a pair of Breit-

Wigner resonances as discussed in the text. The arrows indicate the physical threshold Ethr and the location
E0 = mK +mp of the threshold for our unphysical (larger) masses. We also show experimental results (green
symbols) by Estabrooks et al. [18] and Aston et al. [19]. Due to the definition of the phase shift modulo p
we also plot the phase shift in the inelastic region [19] incremented by p .
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Figure 2: The p-wave scattering phase shift dl=1, I = 3/2. as a function of EKp ⌘
p

s. Our results are
given by blue circles, the green symbols denote experimental values due to [18] and [20]. The broken
line indicates a one-parameter fit (effective range fit with vanishing range parameter) to our data, setting
(p3/

p
s)cotd (p) = a . The arrows indicate the physical threshold Ethr and the location E0 = mK +mp of the

threshold for our unphysical (larger) masses.
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(p3/

p
s)cotd (p) = a . The arrows indicate the physical threshold Ethr and the location E0 = mK +mp of the

threshold for our unphysical (larger) masses.
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and the values of the left-hand side are provided in
Fig. 6 and Table III. The linear fit in s over the four
phase shift points leads to g and mK∗ in Table II and
these agree well with mK∗ and g derived from the ex-
periment. Our results apply for mπ,K on our lattice,
but mπ dependence of g was shown to be very mild
g(mπ = 266 MeV)/g(mphy

π ) ≃ 1.03 within unitarized
ChPT, while its mK dependence is completely negligi-
ble [32].
This result can also be compared to g =

√
6π ḡ =√

6π 1.44 = 6.25 as obtained in the simulation [14] using
the amplitude method and assuming that the K∗ and
Kπ lattice energies are equal.

mK∗(892) gK∗(892) mK∗(1410) gK∗(1410)

[MeV] [no unit] [GeV] [no unit]

lat 891± 14 5.7± 1.6 1.33 ± 0.02 input

exp 891.66 ± 0.26 5.72± 0.06 1.414 ± 0.0015 1.59± 0.03

TABLE II. The resulting resonance masses and K∗
i → Kπ

couplings g, which parametrize the width Γ[K∗
i → Kπ] =

(g2i p
∗3)/(6πs). The lattice results apply for our mπ ≃

266 MeV and mK ≃ 552 MeV, while the experimental
couplings are derived from the observed Γ[K∗

i → Kπ] =
Br[K∗

i → Kπ]ΓK∗

i
and the values of p∗ and s in experiment.

0.31 0.32 0.33 0.34
s

-0.015

-0.012

-0.009

-0.006

-0.003

0

p*3
co

t δ
1/
√s

FIG. 6. The combination (p∗a)3√
sa2

cot δ1(s) as a function of

sa2 in the vicinity of a narrow K∗(892) resonance. The de-
pendence is expected to be linear (8) for a Breit-Wigner res-
onance and the linear fit leads to mK∗ and the coupling g or
Γ[K∗ → Kπ] (7).

2. The phase shift δ1 for 1.3 <
√
s < 1.6 GeV and

K∗(1410), K∗
2 (1430)

Unlike in the region
√
s < 1.3 GeV, our exploratory

extraction of the physics information from the energy
levels in the region

√
s > 1.3 GeV will inevitably be less

reliable and based on certain approximations.

First of all, we will assume that the Kπ scatter-
ing in our simulation is elastic (|1 + 2iTl| = 1) up to√
s < 1.6 GeV, which is a strong approximation but in-

dispensable for using Lüscher’s relations to extract the
phase shift at present. In reality the Kπ channel is cou-
pled in this region to K∗π and Kρ channels, and ex-
perimentally Br[K∗(1410) → Kπ] = 6.6 ± 1.3% while
Br[K∗(1680) → Kπ] = 38.7 ± 2.5%. The treatment
of such an inelastic problem is unfortunately beyond the
ability of current lattice simulations, although some prac-
tically very challenging approaches have been proposed
analytically [34, 44–47]. In fact, we expect that the in-
fluence of K∗π and Kρ channels in our simulation is not
significant, since we did not explicitly incorporate K∗π
and Kρ interpolators4.
The second complication stems from the fact that d-

wave phase shift δ2 cannot be neglected around
√
s ≃

mK∗

2
(1430) in Lüscher’s relations. Therefore we derived

the Lüscher relations that contain δ1 as well as δ2 for ir-
reps considered here: they are obtained from the so-called
determinant condition5 Eq. (28) in [3] by keeping non-
zero δ2. For each irrep B3, B2, E we get one (lengthy)
phase shift equation (analog to Eqs. (41), (42), (56) in
[3]), which depends on q (see 6), δ1(s) and δ2(s).
For a given level En in a given irrep, we know q (6)

and s = E2
n−P 2, but one phase shift equation alone can-

not provide the values for two unknowns δ1(s) and δ2(s).
Another level in another irrep unfortunately leads to two
different unknowns δ1(s̃) and δ2(s̃), since this level in gen-
eral corresponds to a different s̃ (see discussion in Section
3.1.3 of [3]). We overcome this serious difficulty by not-
ing that the four levels with ”ID” K∗(1410) all come in
a very narrow range of

√
s = 1.34± 0.01 GeV (see Table

III). By making a reasonable approximation that s is the
same for all four levels, we extract the unknown δ1 and
δ2 by solving simultaneously two phase shift equations,
namely for6

level 3 in irrep B2 & level 2 in irrep E :
√
s = 1.34± 0.01 GeV→

δ1 = 329.9◦ ± 4.4◦ δ2 = 89.6◦ ± 7.1◦ . (9)

Then we extract δ1,2 from another pair of phase shift
equations, corresponding to

level 3 in irrep B2 & level 2 in irrep B3 :
√
s = 1.34± 0.01 GeV→

δ1 = 329.8◦ ± 4.9◦ δ2 = 91.4◦ ± 6.2◦ (10)

4 Similarly, most of previous simulations of meson resonances with
q̄q interpolators assume that the scattering levels are not seen
when they are not explicitly incorporated.

5 For the original derivation of determinant condition see [42, 48,
49].

6 The levels n = 3 in irreps E(ex,y) and E(ex ± ey) occur at very
similar

√
s, so they both lead to consistent δ1,2 via the same

Lüscher relation (56) in [3]. The errors on the resulting δ1,2 in
(9,10) are determined from the minimal and maximal values of√
s in the range

√
s = 1.34± 0.01 GeV.

p	  wave,	  I=1/2

p	  wave,	  I=3/2
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k3 cot δ1 ¼ ðm2
R − sÞ 6π

ffiffiffi
s

p

g2R
: ð18Þ

We plot this quantity in Fig. 13. The spread of points in
energy is to be expected even for a bound state, as the M
function in the finite-volume quantization condition,

Eq. (6), varies irrep to irrep. Note that A1 points are
systematically lower in energy than those from the E and B
irreps which is a consequence of this (the effect of the
attractive S-wave interaction is found to be small at these
energies). The fit curve, corresponding to Eq. (17), is also
shown, where it is clear that inclusion of the A1 irrep levels
better constrains the slope, which determines gR.
We conclude that there is a vector meson bound state in

this calculation, and we will return to the interpretation of
this state later.

D. πK elastic scattering below ηK threshold

We now briefly study the elastic πK scattering region
below the ηK threshold where single-channel parametriza-
tions are justified. For the S-wave, an effective-range
expansion is adopted, while for the P-wave we first consider
a Breit–Wigner as in the previous section. Since now we are
considering a larger energy region (out to atEcm ¼ 0.201), it
is not guaranteed that the Breit–Wigner will still be capable
of describing the amplitude.
We proceed with simultaneous inclusion of l ¼ 0 and

l ¼ 1 waves in Eq. (6) with the parametrizations described
above, where we are assuming that l ¼ 2 and higher
amplitudes play a negligible role at these low energies.
Fitting to all energy levels below atEcm ¼ 0.201 in irreps
Aþ
1 , T

−
1 from all three volumes, and irreps ½001&A1, ½001&E2,

½011&A1, ½011&B1, ½011&B2, ½111&A1, ½111&E2, and ½002&A1

from the 203 and 243 volumes, we obtain

al¼0 ¼ ð17.2' 0.9' 1.2Þ · at
mR ¼ ð0.16498' 0.00009' 0.00024Þ · a−1t
gR ¼ ð4.72' 0.17' 0.28Þ

2

64
1 0.1 0.2

1 −0.2
1

3

75

χ2=Ndof ¼
42.8
37 − 3

¼ 1.26; ð19Þ

in the case that we restrict the S-wave effective-range expansion to a scattering length. Adding an effective-range term to
the S-wave amplitude does not improve the fit, and thus we explore adjusting the P-wave parametrization. Replacing the
Breit–Wigner with a single-channel version of a P-wave K-matrix featuring a single pole plus a constant,
KðsÞ ¼ g2=ðm2 − sÞ þ γ, and using the Chew–Mandelstam phase space subtracted at the pole, improves the χ2=Ndof ,

al¼0 ¼ ð17.4' 0.9' 1.2Þ · at
m ¼ ð0.16480' 0.00014' 0.00011Þ · a−1t
g ¼ 0.480' 0.023' 0.027

γ ¼ ð10.5' 2.3' 2.4Þ · a2t

2

6664

1 0.0 0.1 0.0

1 −0.6 −0.5
1 0.9

1

3

7775

χ2=Ndof ¼
20.5
37 − 4

¼ 0.62: ð20Þ

In Fig. 14 we show the phase shifts corresponding to
these two fits. We obtain the elastic phase-shift points for
each energy level using Eq. (6). For the irreps where P-
wave is the lowest, it is straightforward to neglect the

D-wave and higher. For irreps where the S-wave is lowest,
we fix the P-wave using the fit result given in Eq. (17) and
use Eq. (6) again assuming the D-wave and higher may be
neglected. The Breit–Wigner parametrization gives a good

 0

 -0.5

 0.5

 1.0

 -1.0

 0.162  0.164  0.166  0.168

FIG. 13 (color online). The πK threshold region in the l ¼ 1
partial wave plotted as k3 cot δ. The darker points are obtained
from irreps where l ¼ 1 is the lowest allowed, while the lighter
points are extracted from A1 irreps where the l ¼ 0 contribution
is accounted for as described in the text. The curve shows the fit
to a relativistic Breit–Wigner with the parameters in Eq. (17).
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description in the energy region around the bound state;
however, there is one P-wave point at higher energy that is
poorly described. The added freedom in the P-wave K-
matrix resolves this.

E. πK;ηK amplitudes constrained by 80 energy levels

We now embark upon a description of the bulk of the
spectrum data presented in Figs. 4, 9, 10, 11, and 12, in terms

of a coupled πK; ηK scattering system. We will restrict
ourselves initially to energies below the ππK threshold,
except for the Aþ

1 at-rest irrep which is dominated by JP ¼
0þ which does not couple to ππK—in this case we consider
energy levels up to πππK threshold at atEcm ¼ 0.304.
A description of the spectra is sought using K-matrix

parametrizations in each partial wave as defined in
Eqs. (11) and (12). We have explored many variations
of this, including using a simple phase space rather than the
Chew–Mandelstam type, using powers of the phase space
instead of momenta to provide the threshold behavior,
varying the subtraction point of the Chew–Mandelstam
functions and using the K-matrix parametrization of
Eq. (13) with a range of different polynomial orders.
The resulting phase shifts and inelasticities are found to
be broadly the same in every fit with error bands that
overlap for much of the region—further discussion of these
systematic variations will appear in Sec. VI H.
Our preferred choice is to parametrize the coupled

πK; ηK t-matrix using a K-matrix featuring a single pole
coupled to both channels plus a constant matrix [see
Eq. (14)]. We opt to use the Chew–Mandelstam phase
space subtracted such that ReIijðs ¼ m2Þ ¼ 0 where m2 is
the K-matrix pole position. Such a parametrization can be
used in both S- and P-waves according to Eq. (11). Initially
we will assume that the D-wave makes no significant
contribution—we will explore the sensitivity to this
assumption later in the manuscript.
Weused levels from the irreps ½000&T1 onL=as¼16;20;24,

½001&E2 on L=as ¼ 20; 24, ½011&B1; B2 on L=as ¼ 20; 24,
and ½111&E2 onL=as ¼ 20; 24—in total 19 energy levels—to
constrain a fit describing theP-wave amplitude. In this casewe
choose to use a constant term only in the γηK;ηK position, with
γπK;πK ¼ γπK;ηK ¼ 0. The result of the fit, which has
χ2=Ndof ¼ 15.0=ð19 − 4Þ ¼ 1.00, is

m ¼ ð0.16497' 0.00012' 0.00002Þ · a−1t
gπK ¼ 0.321' 0.022' 0.032

gηK ¼ 0.65' 0.11' 0.11

γηK;ηK ¼ ð17.3' 7.8' 6.1Þ · a−2t

2

6664

1 0.0 −0.6 −0.5
1 −0.4 −0.2

1 0.8

1

3

7775:

Fixing the P-wave amplitude to that presented above, we vary S-wave parameters to describe 61 energy levels
taken from A1 irreps: [000](16,20,24), [001](20,24), [011](20,24), [111](20,24), and [002](20,24). The result, with
χ2=Ndof ¼ 49.1=ð61 − 6Þ ¼ 0.89, is

m ¼ ð0.2458' 0.0014' 0.0004Þ · a−1t
gπK ¼ ð0.156' 0.004' 0.001Þ · a−1t
gηK ¼ ð0.027' 0.008' 0.008Þ · a−1t
γπK;πK ¼ 0.082' 0.046' 0.022

γπK;ηK ¼ 0.33' 0.13' 0.06

γηK;ηK ¼ −0.41' 0.05' 0.07

2

666666664

1 0.5 −0.3 0.0 0.1 −0.1
1 −0.4 −0.7 0.5 −0.1

1 0.3 −0.6 0.3

1 0.1 −0.1
1 −0.3

1

3

777777775

: ð21Þ
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FIG. 14 (color online). πK S-wave (upper) and P-wave (lower)
elastic scattering phase shifts. Red curve: scattering length in S-
wave and Breit–Wigner in P-wave [Eq. (19)]. Orange curve:
scattering length in S-wave and K-matrix pole plus constant in P-
wave [Eq. (20)]. The points were determined using Eq. (6) as
described in the text. In the P-wave there are three overlapping
points very slightly above threshold.
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We refer the reader to Ref. [55], in particular to their
Fig. 16, where the result of applying a 2 → 2 formalism in
an energy region where higher-multiplicity scattering is
occurring is shown. They observe that the resulting phase-
shift points do not lie on a single curve in the inelastic
region. Such an observation would be a signal that our
assumption of a negligible role for ππK is unjustified.

We proceed with an attempt to describe the spectra in
irreps having l ¼ 2 as their lowest partial wave—there are
24 such levels which come from Eþ, Tþ

2 , ½001$B1; B2

irreps. Under the assumption that the l ≥ 3 partial waves
are negligible in this energy region, we fit the energy levels
using a coupled πK; ηK K-matrix model of the “pole plus
constant” form we have used previously and find

m ¼ ð0.2789& 0.0011& 0.0002Þ · a−1t
gπK ¼ ð1.25& 0.06& 0.01Þ · at
gηK ¼ ð0.29& 0.64& 0.03Þ · at
γπK;πK ¼ ð21& 13& 5Þ · a4t
γπK;ηK ¼ ð34& 55& 7Þ · a4t
γηK;ηK ¼ ð−8& 30& 13Þ · a4t

2

666666664

1 −0.03 −0.34 0.50 0.04 0.45

1 −0.41 −0.34 −0.27 0.30

1 −0.26 0.64 −0.67
1 −0.03 0.35

1 0.10

1

3

777777775

χ2=Ndof ¼
16.0
24 − 6

¼ 0.89: ð22Þ

The resulting phase shifts and inelasticity are presented
in Fig. 18. As with the S-wave, this description is entirely
consistent with πK–ηK decoupling. The same SUð3ÞF
logic, outlined in Appendix A, applies to the D-wave as
applied to the S-wave. Under the assumption of complete
decoupling, we can attempt to independently directly
extract πK and ηK phase shifts using Eq. (6) from levels
identified as being “πK” or “ηK” by their overlaps (states
which overlap strongly with qq̄-like operators typically

also overlap with πK and not ηK and are included in the πK
list). These points are included in Fig. 18, where we note
immediately that the πK phase-shift points are compatible
with lying on a single curve. This, and the quite reasonable
χ2=Ndof for the fit in Eq. (22), may suggest that our neglect
of ππK scattering in the D-wave is justified at these
energies.
Figure 18 clearly shows a resonancelike behavior in πK

between atEcm ¼ 0.26 and 0.29. The rapid rise in the phase
shift suggests a narrow resonance, and indeed an elastic
relativistic Breit–Wigner description of just the levels with
large overlap onto πK-like operators is very successful with
atmR ¼ 0.2785ð8Þ and gR ¼ 9.26ð36Þ, where the energy-

dependent width is given by Γl¼2ðsÞ ¼
g2R
6π

k5
sm2

R
.

The description of the spectrum in Eþ by the model of
Eq. (22) is shown in Fig. 19 where it is seen to be quite
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FIG. 18 (color online). The D-wave phase shifts (in degrees)
and inelasticity as obtained from our lattice data from states with
energies up to the πππK threshold.
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FIG. 19 (color online). The finite-volume spectrum in the Eþ

irrep at integer values of L=as determined by solving Eq. (6) for
the model in Eq. (22) (orange), compared with the lattice QCD
energies (black).
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FIG. 7: Terms B1 −B4 contributing to N → Nπ.

B1 = 3 τ (t, t, b, e,β, ϵ) τ (t, t′, a, c′,α, γ′)

τ (t, t′, g, a′, δ,α′) τ (t, t′, c, b′, γ,β′)

B2 = −3 τ (t, t′, b, b′,β,β′) τ (t, t′, c, c′, γ, γ′)

τ (t, t, a, e,α, ϵ) τ (t, t′, g, a′, δ,α′)

B3 = −3 τ (t, t, c, e, γ, ϵ) τ (t, t′, b, a′,β,α′)

τ (t, t′, a, c′,α, γ′) τ (t, t′, g, b′, δ,β′)

B4 = 3 τ (t, t′, c, c′, γ, γ′) τ (t, t, a, e,α, ϵ)

τ (t, t′, b, a′,β,α′) τ (t, t′, g, b′, δ,β′) (A6)

3. Nπ → N

This matrix element has 4 terms contributing:

1√
2
ΓA†
α′µP

±
µνΓ

A
ναΓ

B
βγΓ

B†
γ′β′Γ

π†
ϵ′δ′

φ̂snk
N (a, b, c)φ̂src

N (a′, b′, c′)φ̂src
π (g′, e′)

4∑

i=1

Ci , (A7)

where summation over index pairs is implied.
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FIG. 8: Terms C1 − C4 contributing to Nπ → N .

C1 = 3 τ (t, t′, b, b′,β,β′) τ (t, t′, c, c′, γ, γ′)

τ (t′, t′, e′, a′, ϵ′,α′) τ (t, t′, a, g′,α, δ′)

C2 = −3 τ (t, t′, c, c′, γ, γ′) τ (t, t′, a, b′,α,β′)

τ (t′, t′, e′, a′, ϵ′,α′) τ (t, t′, b, g′,β, δ′)

C3 = −3 τ (t, t′, c, a′, γ,α′) τ (t, t′, a, g′,α, δ′)

τ (t, t′, b, c′,β, γ′) τ (t′, t′, e′, b′, ϵ′,β′)

C4 = 3 τ (t, t′, a, b′,α,β′) τ (t, t′, c, a′, γ,α′)

τ (t, t′, b, g′,β, δ′) τ (t′, t′, e′, c′, ϵ′, γ′) (A8)

4. Nπ → Nπ

Here 19 terms contribute:

1

2
ΓA†
α′µP

±
µνΓ

A
ναΓ

B
βγΓ

B†
γ′β′Γπ

δϵΓ
π†
ϵ′δ′

φ̂snk
N (a, b, c)φ̂snk

π (e, g)φ̂src
N (a′, b′, c′)φ̂src

π (g′, e′)
19∑

i=1

Di ,

(A9)

where summation over index pairs is implied.
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4. Nπ → Nπ

Here 19 terms contribute:

1

2
ΓA†
α′µP

±
µνΓ

A
ναΓ

B
βγΓ

B†
γ′β′Γπ

δϵΓ
π†
ϵ′δ′

φ̂snk
N (a, b, c)φ̂snk

π (e, g)φ̂src
N (a′, b′, c′)φ̂src

π (g′, e′)
19∑

i=1

Di ,

(A9)

where summation over index pairs is implied.
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FIG. 9: Terms D1 −D5 contributing to Nπ → Nπ.

D1 = 3 τ (t, t′, b, b′,β,β′) τ (t, t′, c, c′, γ, γ′)

τ (t′, t, e′, e, ϵ′, ϵ) τ (t, t′, a, g′,α, δ′)

τ (t, t′, g, a′, δ,α′)

D2 = −3 τ (t′, t, e′, e, ϵ′, ϵ) τ (t, t′, a, b′,α,β′)

τ (t, t′, g, a′, δ,α′) τ (t, t′, b, c′,β, γ′)

τ (t, t′, c, g′, γ, δ′)

D3 = −3 τ (t′, t, e′, e, ϵ′, ϵ) τ (t, t′, c, a′, γ,α′)

τ (t, t′, a, g′,α, δ′) τ (t, t′, b, c′,β, γ′)

τ (t, t′, g, b′, δ,β′)

D4 = 9 τ (t′, t, e′, e, ϵ′, ϵ) τ (t, t′, a, c′,α, γ′)

τ (t, t′, c, a′, γ,α′) τ (t, t′, b, g′,β, δ′)

τ (t, t′, g, b′, δ,β′)

D5 = −6 τ (t, t′, a, a′,α,α′) τ (t′, t, e′, e, ϵ′, ϵ)

τ (t, t′, b, c′,β, γ′) τ (t, t′, g, b′, δ,β′)

τ (t, t′, c, g′, γ, δ′) (A10)
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FIG. 10: Terms D6 −D10 contributing to Nπ → Nπ

D6 = −6 τ (t′, t, e′, e, ϵ′, ϵ) τ (t, t′, g, g′, δ, δ′)

τ (t, t′, b, a′,β,α′) τ (t, t′, a, c′,α, γ′)

τ (t, t′, c, b′, γ,β′)

D7 = 6 τ (t, t′, a, a′,α,α′) τ (t, t′, b, b′,β,β′)

τ (t, t′, c, c′, γ, γ′) τ (t′, t, e′, e, ϵ′, ϵ)

τ (t, t′, g, g′, δ, δ′)

D8 = −9 τ (t, t, c, e, γ, ϵ) τ (t, t′, a, c′,α, γ′)

τ (t′, t′, e′, a′, ϵ′,α′) τ (t, t′, b, g′,β, δ′)

τ (t, t′, g, b′, δ,β′)

D9 = 9 τ (t, t′, c, c′, γ, γ′) τ (t, t, a, e,α, ϵ)

τ (t′, t′, e′, a′, ϵ′,α′) τ (t, t′, b, g′,β, δ′)

τ (t, t′, g, b′, δ,β′)

D10 = 9 τ (t, t′, g, g′, δ, δ′) τ (t, t, b, e,β, ϵ)

τ (t, t′, a, c′,α, γ′) τ (t′, t′, e′, a′, ϵ′,α′)

τ (t, t′, c, b′, γ,β′) (A11)
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FIG. 11: Terms D11 −D15 contributing to Nπ → Nπ

D11 = −9 τ (t, t′, b, b′,β,β′) τ (t, t′, c, c′, γ, γ′)

τ (t, t′, g, g′, δ, δ′) τ (t, t, a, e,α, ϵ)

τ (t′, t′, e′, a′, ϵ′,α′)

D12 = −3 τ (t, t, c, e, γ, ϵ) τ (t, t′, a, g′,α, δ′)

τ (t, t′, g, a′, δ,α′) τ (t, t′, b, c′,β, γ′)

τ (t′, t′, e′, b′, ϵ′,β′)

D13 = 3 τ (t, t, b, e,β, ϵ) τ (t, t′, a, c′,α, γ′)

τ (t, t′, g, a′, δ,α′) τ (t′, t′, e′, b′, ϵ′,β′)

τ (t, t′, c, g′, γ, δ′)

D14 = 3 τ (t, t, c, e, γ, ϵ) τ (t, t′, b, a′,β,α′)

τ (t, t′, a, g′,α, δ′) τ (t′, t′, e′, b′, ϵ′,β′)

τ (t, t′, g, c′, δ, γ′)

D15 = 6 τ (t, t′, a, a′,α,α′) τ (t, t, c, e, γ, ϵ)

τ (t′, t′, e′, b′, ϵ′,β′) τ (t, t′, b, g′,β, δ′)

τ (t, t′, g, c′, δ, γ′) (A12)
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FIG. 12: Terms D16 −D19 contributing to Nπ → Nπ

D16 = −3 τ (t, t′, g, g′, δ, δ′) τ (t, t, c, e, γ, ϵ)

τ (t, t′, b, a′,β,α′) τ (t, t′, a, c′,α, γ′)

τ (t′, t′, e′, b′, ϵ′,β′)

D17 = −6 τ (t, t′, a, a′,α,α′) τ (t, t′, g, g′, δ, δ′)

τ (t, t, c, e, γ, ϵ) τ (t, t′, b, c′,β, γ′)

τ (t′, t′, e′, b′, ϵ′,β′)

D18 = 9 τ (t, t′, g, g′, δ, δ′) τ (t, t, a, e,α, ϵ)

τ (t, t′, c, a′, γ,α′) τ (t, t′, b, c′,β, γ′)

τ (t′, t′, e′, b′, ϵ′,β′)

D19 = −9 τ (t, t, a, e,α, ϵ) τ (t, t′, c, a′, γ,α′)

τ (t, t′, b, g′,β, δ′) τ (t, t′, g, b′, δ,β′)

τ (t′, t′, e′, c′, ϵ′, γ′) (A13)
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ψ(3770):	  resonance	  close	  to	  DD	  threshold

La-ce	  study:	  DD	  scaMering	  on	  two	  
volumes	  and	  mπ=266	  and	  157	  MeV

CBL	  et	  al.,	  JHEP	  (2015)	  [arXiv:1503.05363]

15	  interpolators	  of	  cc	  type	  
2	  operators	  of	  type	  DD
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Figure 5. The comparison of the final 1−− spectrum to the experiment. The magenta diamond
denotes ψ(3770) resonance mass from the Breit-Wigner fit (i) or extended fit (ii), given in Eqs. (5.4)
and (5.6), respectively. The magenta triangle denotes ψ(2S) obtained as a pole in DD̄ channel.
The blue triangles denote masses of J/ψ and ψ(2S) extracted as energy levels in the finite box.
The statistical and scale setting errors have been summed in quadrature.

6 Results for the scalar channel

6.1 Discrete spectrum

The energy levels in the scalar channel are shown in Figs. 6. The only experimentally well

established state is χc0(1P ). The triangles represent the intriguing experimental candidates

for χc0(2P ), none of which is commonly accepted (see Section 2).

The spectrum from a lattice simulation consists both of energy levels that have large

overlap with q̄q operators as well as energy levels with dominant overlap to D̄D operators.

The latter appear near their non-interacting energies En.i.
DD of Eq. (3.3), which are denoted

by dashed lines in Figs. 6a,d. On ensemble (1) levels n = 2, 4 appear near the non-

interacting D(0)D̄(0) and D(1)D̄(−1) (cf. Fig. 6a). Levels n = 2, 3, 4 on ensemble (2) have

dominant overlap to D̄D scattering operators and are close to non-interacting D(0)D̄(0),

D(1)D̄(−1) and D(2)D̄(−2) energies (cf. Fig. 6d).
Each energy level in addition to the number of expected D(q)D̄(−q) scattering levels

is related to the presence of a bound state or a resonance. There are two such states, that

cannot be attributed to D(q)D̄(−q) for both ensembles. The ground state is related to

χc0(1P ) and is close to its experimental mass. The second of these two levels appears above

threshold and corresponds to n = 3 for ensemble (1) and n = 5 for ensemble (2), as shown

in Figs. 6a and 6d. The avoided level crossing scenario suggests that an additional level

appears somewhere in the range E ≃ m± Γ, which suggests the existence of a resonance

– 13 –

[same	  paper:	  
ηc0(2P)	  or	  X(3915):	  0++	  	  
controversial	  signal] ψ(3770),	  mR g(no	  unit) ψ(2S),	  mR

mπ=266	  MeV 3774(6)(10) 9.7(1.4) 3676(6)(9)

mπ=157	  MeV 3789(68)(10) 28(21) 3682(13)(9)

Exp. 3773.15(33) 18.7(1.4) 3686.11(1)
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Z

X(3872)	  0+(1++)

at	  mπ=266	  MeV	  
22	  cc	  and	  ccuu,ccud,..interpolators	  	  
for	  I=0	  and	  1	  
(DD*,	  J/ψ	  ρ,	  J/ψ	  ω,	  ηc	  σ,	  χc0	  π,	  χc2	  π,	  4q)

[3]	  Padmanath	  et	  al,Phys.	  Rev.	  D	  92	  (2015)	  034501	  
	  [arXiv:1503.03257]

 3.4

 3.55

 3.7

 3.85

 4

 4.15

 4.3

 4.45

E
n 

[G
eV

]

 Exp. Lat. Lat. − O4q 

D(0) -D*(0)
J/Ψ(0) ω(0)

D(1) -D* (-1)

J/Ψ(1) ω(-1)

ηc(1) σ(-1)

(a) I=0 : -cc ( -uu + -dd ) & -cc

χc1(0) σ(0)

 3.4

 3.55

 3.7

 3.85

 4

 4.15

 4.3

 4.45

E
n 

[G
eV

]

Exp. Lat. Lat. − O4q 

D(0) -D*(0)
J/Ψ(0) ρ(0)

D(1) -D* (-1)
J/Ψ(1) ρ(-1)

(b) I=1 : -cc-ud 

χc0(1) π(-1)
χc1(1) π(-1)

FIG. 3 (color online). The spectra of states with JPC ¼ 1þþ for the cases with u=d valence quarks. The energies En ¼ Elat
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s:a: þ
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s:a: [Eq. (11)] are shown. The horizontal lines show energies of noninteracting two-particle states (1) and experimental thresholds,
indicating uncertainty related to σ width. In each subplot, the middle block shows the discrete spectrum determined from our
lattice simulation from the optimized basis [Eq. (9)]. The right-hand block shows the spectrum we obtained from the optimized basis
of operators with the ½c̄ q̄$Ḡ½cq$G operators excluded. The gray marks, on the right-hand side of each pane, indicate the lowest three-
meson threshold mηc þ 2mπ , while the actual lowest ηcππ level on the lattice appears higher due to l ¼ 1, which requires relative
momenta. The left-hand block shows the physical thresholds and possible experimental candidates (a) χc1, Xð3872Þ and Xð3940Þ,
(b) Zþ

c ð4050Þ and Zþ
c ð4250Þ. The violet error bars for experimental candidates show the uncertainties in the energy and the black error

bars show its width.
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FIG. 5 (color online). The spectrum of states [Eq. (11)] with
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17 ), (ii) optimized basis without c̄c operators
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that the candidate for Xð3872Þ disappears when removing c̄c
operators although diquark-antidiquark operators are present in
the basis, while it is not clear to infer on the dominant nature of
this state just from the third panel. The OMM

17 ¼ χc1ð0Þσð0Þ is
excluded from the basis to achieve better signals and clear
comparison.
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of the states with JPC ¼ 1þþ and three quark contents.
The horizontal lines represent various two-meson non-
interacting energies.
The states that have dominant overlap with two-meson

scattering operators are represented by circles and the color
coding identifies the respective scattering channels based
on the following criteria:

(i) The levels appear close to the expected two-meson
noninteracting energies.

(ii) They have dominant overlaps hΩjOM1M2
j jni with

corresponding OM1M2
j . This is also verified based on

the ratios Zn
j =maxmðZm

j Þ, which are independent of
normalization of operators and are shown in Fig. 6.

(iii) If the corresponding two-meson interpolators are
excluded from the basis, this eigenstate disappears
or becomes too noisy to be identified. This is
determined by comparing the pattern of the effective
masses and overlaps between the original basis and
the basis after operator exclusion.

The remaining states, that are not attributed to the two-
meson scattering channels, are represented by red squares.
Figures 3 and 4 also compare the spectra between the

two bases of operators, one with optimized operator set and
another with the optimized set excluding ½c̄ q̄&Ḡ½cq&G. In
all three cases we see an almost negligible effect on the
low lying states, while we do observe an improvement in
the signals for higher lying states in the basis without
½c̄ q̄&Ḡ½cq&G. The same conclusion applies for overlaps.
The employed irreducible representation Tþþ

1 contains
the states JPC ¼ 1þþ of interest, as well as JPC ¼ 3þþ

states due to the broken rotational symmetry. Upon
inclusion of the interpolator Oc̄c

8 to the basis [Eq. (9)]
the spectra for both I ¼ 0 channels remain essentially
unchanged except for an additional level at
E≃ 4.1–4.2 GeV [Eq. (11)]. This is where the earlier
simulation on the same ensemble [25] and the simulation
[47] have identified the only 3þþ state in the energy region
of our interest. In the following subsections, we present
the spectra of JPC ¼ 1þþ states in three flavor channels for
the basis [Eq. (9)], where Oc̄c

8 is excluded.

A. I ¼ 0 channel with flavor c̄cðūuþ d̄dÞ and c̄c

This is the channel where the experimental Xð3872Þ
resides. We will argue that the energy levels affected by this
state are n ¼ 2 (red squares) and n ¼ 6 (blue circle) from
Fig. 3(a). The lowest state is the conventional χc1ð1PÞ. The
overlaps of the three low-lying levels represented by circles
show dominant J=ψð0Þωð0Þ, ηcð1Þσð−1Þ and χc1ð0Þσð0Þ
Fock components. The highest two states in Fig. 3(a)
have significant overlap with the J=ψð1Þωð−1Þ and
D0ð1ÞD̄'

0ð−1Þ operators.
Now we focus on the eigenstates that are related to

Xð3872Þ. The c̄c interpolators alone give an eigenstate
close to the DD̄' threshold (right pane of Fig. 5), but one

cannot establish whether this eigenstate is related to
Xð3872Þ or to nearby two-meson states in this case.
Therefore we turn to the spectrum of the full optimized
basis [midpane in Fig. 3(a)], where levels n ¼ 2
(red squares) and n ¼ 6 (blue circles) are found to
have dominant overlap with the c̄c and DD̄' operators.
Excluding either of these operators results in disappearance
of one level and a shift in the other level towards the DD̄'

threshold. We emphasize that one of the two levels remains
absent when DD̄' and O4q are used and Oc̄c is not, as is
evident from the first and second panel from the left of
Fig. 5. This indicates that the c̄c Fock component is crucial
for Xð3872Þ, while the ½c̄ q̄&Ḡ½cq&G structure alone does not
render it. This also implies a combined dominance of c̄c
andDD̄' operators in determining the position of these two
levels, while their resulting energies are not significantly
affected whether O4q is used in addition or not.
We determine the DD̄' scattering phase shift from levels

n ¼ 2; 6 via Lüscher’s relation [31] assuming elastic
scattering. The phase shift is interpolated near threshold
using the effective-range approximation. The eigenstate
n ¼ 6 (blue circle) is interpreted as the Dð0ÞD̄'ð0Þ scatter-
ing state, which is significantly shifted up due to a large
negative scattering length [48]. The resulting scattering
matrix T ∝ 1=ðcot δðpÞ − iÞ has a pole just below the
threshold where cot δðpBÞ ¼ i is satisfied. We neglect
possible effects of the left-hand cut in the partial wave
amplitude. The results confirm a shallow bound state just
below the DD̄' threshold and the binding momentum pB
renders the mass of the bound state, interpreted as exper-
imentally observed Xð3872Þ. The resulting mass of
Xð3872Þ and its binding energy are provided in Table III
and in Fig. 7, which indicate that it is insensitive to
inclusion of diquark-antidiquark interpolators within
errors. The mass of Xð3872Þ was extracted along these
lines for the first time in Ref. [17], where this channel was
studied in a smaller energy range on the same ensemble
without diquark-antidiquark interpolators. The error on the

-30
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Exp. Lat. Lat.-O4q [17] [18]

mX(3872)−mD−m-D*

770

790

810

830

850
mX(3872)−ms.a.

FIG. 7 (color online). Mass of Xð3872Þ with respect to ms:a:
from the present simulation, previous lattice studies [17,18] and
experiment [6].
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034501-9

all	  observe	  X(3872)	  closely	  below	  DD*	  
(with	  strong	  cc	  component)

χc1(1P)

[1] [2][3]
(large	  scaM.length	  1.1	  fm)

[3]
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CBL	  et	  al.,	  Phys.	  LeM.	  B	  750	  (2015)	  17	  [arXiv:1501.01646]
BK,	  B*K	  scaMering	  (PACS-‐CS	  la-ces,	  mπ=157	  MeV)

0+: Bound	  state	  Bs0	  with	  	  	  
m(Bs0)	  =	  5.711(13)(19)	  GeV	  

3

FIG. 1. Plot of ap cot δ(p) vs. (ap)2 for BK scattering in
s-wave. Circles are values from our simulation; red lines in-
dicate the error band following the Lüscher curves (broken
lines). The full line gives the linear fit (3) to the points. Be-
low threshold |p| is added and the zero of the combination (4)
indicates the bound state position in infinite volume.

For JP = 0+ we computed cross-correlations between
four s̄b (in the form given in Table XIII of [6]) and three
BK (irrep A+

1 ) interpolators:

O5 ≡ OBK
1 = [s̄γ5u] (p⃗ = 0) [ūγ5b] (p⃗ = 0) + {u → d} ,

O6 ≡ OBK
2 = [s̄γtγ5u] (p⃗ = 0) [ūγtγ5b] (p⃗ = 0) + {u → d} ,

O7 ≡ OBK
3 =

∑

p⃗=±ex,y,z 2π/L

[s̄γ5u] (p⃗) [ūγ5b] (−p⃗) + {u → d} .

As in earlier experience it turned out that the full set of
operators gave noisier signals than suitable subsets so for
the final analysis we use the interpolator set (1,2,4,5,7).
The energy values resulting from correlated 2-exponential
fits to the eigenvalues are given in Table III.
In this channel B and K are in s-wave. If there is

a bound state one expects an eigenstate with energy
approaching the bound state energy from below in the
infinite volume limit. The levels above threshold then
would be dominated by BK interpolators with back-to-
back momenta. This is exactly what is seen from the
overlap ratios: The lowest level is dominated by interpo-
lators 1,2 and 4, level 2 by the B(0)K(0) interpolator 5
and level 3 by the B(1)K(−1) interpolator 7.
As shown in (3) we can use the values of p cot δ(p)

from Lüscher’s relation to determine the effective range
parametrization near threshold. The energy eigenvalues
give the points shown in Fig. 1 together with a linear fit.
The value and slope at threshold can be related to the
scattering length and effective range:

aBK
0 = −0.85(10) fm , rBK

0 = 0.03(15) fm . (5)

Equation 4 gives the bound state position. From this the
binding energy is estimated to be mB + mK − mBs0

=
64(13)(19) MeV; thus, using the physical threshold as
input to minimize systematic effects, we predict a bound
state Bs0 with JP = 0+ at a mass of

mBs0
= 5.711(13)(19)GeV . (6)

FIG. 2. Plot of ap cot δ(p) vs. (ap)2 for B∗K scattering in
s-wave, as given by the levels 1, 3 and 4 in Table III; see
analogous caption of Fig. 1.

The first error is due to statistics and the effective range
fit, and the second value is our estimate for the systematic
error with the main contributions due to discretization,
unphysical Kaon mass, and finite volume effects. Details
of this uncertainty estimate are provided in Table IV.
For JP = 1+ we computed cross-correlations between

eight s̄b (in the form given in Table XIII of [6]) and three
B∗K (irrep T+

1 ) interpolators:

O9 ≡ OB∗K
1,k = [s̄γ5u] (p⃗ = 0) [ūγkb] (p⃗ = 0) + {u → d} ,

O10 ≡ OB∗K
2,k = [s̄γtγ5u] (p⃗ = 0) [ūγtγkb] (p⃗ = 0) + {u → d} ,

O11 ≡ OB∗K
3,k =

∑

p⃗=±ex,y,z 2π/L

[s̄γ5u] (p⃗) [ūγkb] (−p⃗) + {u → d} .

Comparing various subsets of interpolators the most sta-
ble set was (3,4,6,9,11), where four energy levels could be
determined (Table III).
Based on the overlaps, levels 3 and 4 are dominated

by interpolators 9 (B∗(0)K(0)) and 11 (B∗(1)K(−1)),
respectively. The lowest energy level (dominated by in-
terpolators 3 and 4) agrees with a bound state interpre-
tation. A linear fit to the points corresponding to energy
levels 1, 3 and 4 gives the scattering parameters

aB
∗K

0 = −0.97(16) fm , rB
∗K

0 = 0.28(15) fm . (7)

This indicates a B∗K bound state Bs1 with a binding en-
ergy of 71(17)(19) MeV. Using again the physical thresh-
old as input we obtain

mBs1
= 5.750(17)(19)GeV . (8)

This state has not (yet) been observed in experiments.
Level 2 (dominated by interpolator 6) lies just below

threshold. This is interpreted, as in the case of the
Ds1(2536) [6], to be the j = 3

2 state with JP = 1+

which does not couple to B∗K in s-wave in the heavy
quark limit [3]. The composition of the state with regard
to the qq operators is fairly independent of whether the
B∗K operators are included or not. Assuming that the

1+: Bound	  state	  Bs1	  with	  	  m(Bs1)=	  5.750(17)(19)	  GeV	  	  	  

Close	  to	  threshold	  weakly	  coupled	  state	  Bs1’	  at	  m=5.831(9)(6)	  GeV	  	  
(Exp:	  Bs1(5830)	  at	  5.8287(4)	  GeV)	  

(prediction)

(prediction)
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Berkowitz	  et	  al.	  (CalLat),[arXiv:1508.00886]	  

mπ=800	  MeV	  (u,d,s	  flavor	  symmetric	  limit)	  
spa3al	  extent	  up	  to	  4.6	  fm	  
par3al-‐waves:	  S,	  P,	  D,	  F
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FIG. 3. The top panel shows the absolute values of the
transition amplitude in units of inverse m⇡ ⇠ 400 MeV as a
function of the c.m. ⇡⇡ energy. This is determined for two
di↵erent values of Q2/GeV2 = 0, 0.025. For comparison, in
the lower panel we show the absolute values of the elastic
` = 1 ⇡⇡ amplitude,

��M`=1
⇡⇡

��.

larger than phenomenological parameterizations of the
physical cross section [42, 43] can be easily understood:
Near the resonance we have,

lim
E

?
⇡⇡!m⇢

�(⇡+� ! ⇡+⇡0) / q?
⇡�

F 2

⇡⇢

(m
⇢

, 0)

m2

⇡

�
1

(m
⇢

)
,

and the q?
⇡�

F 2

⇡⇢

(m
⇢

, 0)/m2

⇡

ratio we find to be approx-
imately 60% of the experimental value, and we expect
this to vary only slowly with changing quark mass. On
the other hand, the width of the ⇢ when m

⇡

⇠ 400MeV,
12.4(6) MeV [39], is approximately 12 times smaller than
the experimental width [44], scaling as expected for an
approximately quark mass independent coupling, g

⇢⇡⇡

,
with reduced P -wave phase-space. This suggests that
as future calculations are performed with quark masses
closer to their physical values, and as the ⇢-resonance be-
comes broader [26], the ⇡+� ! ⇡+⇡0 cross section will
decrease by an order of magnitude. For comparison, in
Fig. 4 we plot the ` = 1 ⇡+⇡0 elastic cross section, whose
factor of 5 kinematic enhancement with respect to the
experimental determination (see for example, Ref. [45])
can be understood by 1/q?2 dependence in the vicinity
of the resonance.

Final remarks: We have presented the first deter-
mination of a resonant radiative transition amplitude
from QCD. This exploratory study of ⇡⇡ ! ⇡�?, al-
though performed with unphysically heavy light quarks,
serves as a proof of principle that hadronic transition pro-
cesses involving resonating few-body states can be rigor-
ously studied using lattice QCD. We have demonstrated
how from this amplitude, by analytically continuing to
a pole in the complex energy plane, one may obtain the
⇢ ! ⇡�? form-factor where the ⇢ is treated as an unsta-
ble resonance, and have also obtained the ⇡+� ! ⇡+⇡0

50
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FIG. 4. The top panel shows the ⇡+� ! ⇡+⇡0 cross section
as a function of the ⇡⇡ c.m. energy. The lower panel shows
the elastic ` = 1 scattering cross section. One observes near
the resonance the enhancement of the ⇡+� ! ⇡+⇡0 cross
section.

cross-section, and discussed how we expect the results to
change in future calculations using lighter quark masses.
Closely related techniques can be implemented in fu-

ture studies of hadron structure and weak decays. As
well as the obvious extension into the baryon sector,
�?N ! N? ! N⇡, there are processes important
for testing the limits of the Standard Model such as
B ! K⇡ `+`� [46, 47], where the K⇡ system is known
to resonate.
Having demonstrated in this work the feasibility of

studying radiative transition of two-body hadronic res-
onances directly from QCD, future studies will focus on
the extension of this work. The technology for studying
transition amplitudes with any number of open two-body
states has been already developed [36, 37] and here we
have tested it in the case where there is only one channel
open. Future calculations will accommodate for simi-
lar processes involving resonances that decay strongly to
more than one hadronic state, for example K�? ! K? !
K⇡/K⌘ [24, 25] and ⇡�? ! ⇢? ! ⇡⇡/KK [26]. Further-
more, given the recent and exciting theoretical develop-
ment for the study of three strongly interacting parti-
cles via lattice QCD [20–23], we can also expect electro-
magnetic transition amplitudes involving three or more
hadrons (e.g. N�? ! N? ! N⇡⇡).

Acknowledgments

We thank our colleagues within the Hadron Spec-
trum Collaboration. The software codes Chroma [48] and
QUDA [49, 50] were used to perform this work on clus-
ters at Je↵erson Laboratory under the USQCD Initia-
tive and the LQCD ARRA project. We acknowledge re-
sources used at the Oak Ridge Leadership Computing

Radia3ve	  decays

mπ=400	  MeV

no	  backtracking	  quarks!



C.B. Lang (2015)

More	  than	  two	  par3cle	  states

47

Extension	  to	  3-‐par3cle	  channels

Hansen	  &	  Sharpe,	  [arXiv:1504.04248]

Hansen	  &	  Sharpe,PR	  D	  90,	  116003	  (2014)	  [arXiv:1408.5933]	   quan3za3on	  condi3on

Meißner	  et	  al.,PRL	  114,	  091602	  (2015)	  [arXiv:1412.4969]	   shallow	  bound	  states

…has	  started	  already

But:	  No	  numerical	  results	  yet!



C.B. Lang (2015)

The	  Future?

48



C.B. Lang (2015)

The	  Future?

48

PredicHon	  is	  very	  difficult,	  especially	  about	  the	  
future	  (Niels	  Bohr)	  

(according	  to	  hMps://en.wikiquote.org/wiki/Niels_Bohr)



C.B. Lang (2015)

The	  Future?

48

PredicHon	  is	  very	  difficult,	  especially	  about	  the	  
future	  (Niels	  Bohr)	  

(according	  to	  hMps://en.wikiquote.org/wiki/Niels_Bohr)

You	  shouldn’t	  believe	  all,	  that	  you	  find	  in	  the	  
internet	  (Albert	  Einstein)



C.B. Lang (2015)

Thank	  you!

49


