Resonances from lattice QCD

Christian B. Lang
University of Graz, Austria

Resonances from lattice QCD

Christian B. Lang
University of Graz, Austria

Experiment \rightarrow Analysis

Partial wave amplitude f_{ℓ}

Unitarity:

$$
\begin{aligned}
& \left|S_{\ell}\right|=1 \\
& S_{\ell}=1+2 \mathrm{i} \rho f_{\ell}=\mathrm{e}^{2 \mathrm{i} \delta_{\ell}} \\
& f_{\ell}^{-1}(s)=\rho(s) \cot \delta_{\ell}(s)-\mathrm{i} \rho(s)
\end{aligned}
$$

$s>s_{\text {threshold }}$ $\left(s=E_{c m s}^{2}\right)$
$\rho(s)$ phase
space factor

Analyticity: Partial wave amplitude f_{ℓ}

f_{ℓ} is analytic: that would be boring!

Analyticity: Partial wave amplitude f_{ℓ}

f_{ℓ} is analytic: that would be boring!
f_{ℓ} is analytic up to cuts and poles
Cuts:
right hand cuts due to unitarity
left hand cuts due to exchange processes (crossing)

Poles:

below threshold on the real axis: bound states in the 2nd Riemann sheet: resonances

Partial wave amplitude f_{ℓ}

Unitarity: $\quad\left|S_{\ell}\right|=1$

$$
\begin{aligned}
& S_{\ell}=1+2 \mathrm{i} \rho f_{\ell}=\mathrm{e}^{2 \mathrm{i} \delta_{\ell}} \\
& f_{\ell}^{-1}(s)=\rho(s) \cot \delta_{\ell}(s)-\mathrm{i} \rho(s)
\end{aligned}
$$

$s>s_{\text {threshold }}$
$\left(s=E_{c m s}^{2}\right)$
$\rho(s)$ phase space factor

Analyticity: f_{ℓ} is analytic up to cuts and poles $f_{\ell}^{-1}(s)=0 \rightarrow$ pole in the complex plane

Resonance or bound state

We will need this later

- pole $2^{\text {nd }}$ sheet
- pole $1^{\text {st }}$ sheet

Resonance or bound state

We will need this later

- pole $2^{\text {nd }}$ sheet
- pole $1^{\text {st }}$ sheet

The lattice approach

Regularization: Lattice QCD

Ken Wilson

\longrightarrow
Gluon $U_{\mu}=e^{i A_{\mu}} \in \mathrm{SU}(3)$ Quark ψ Antiquark $\bar{\psi}$
lattice spacing a

$$
U_{\mu}(x, y, z, \tau)
$$

Quantization:

$$
\int[d U][d \psi][d \bar{\psi}] \rightarrow \sum_{\{U . \psi, \bar{\psi}\}}
$$

The path integral becomes a well-defined (very large) sum over field configurations

Lattice tools: correlation functions

$$
X_{i}(t)<-\operatorname{cs} \bar{X}_{j}(0)
$$

$$
C_{i j}(t) \equiv\left\langle X_{i}(t) \bar{X}_{j}(0)\right\rangle=\sum_{n}\left\langle X_{i} \mid n\right\rangle \mathrm{e}^{-t E_{n}}\left\langle n \mid \bar{X}_{j}\right\rangle
$$

$$
\begin{array}{cc}
X_{i} & \text { lattice operator } \\
n & \text { "physical" eigenstate }
\end{array}
$$

Lattice tools: correlation functions

$$
X_{i}(t)<\sec \bar{X}_{j}(0)
$$

$$
C_{i j}(t) \equiv\left\langle X_{i}(t) \bar{X}_{j}(0)\right\rangle=\sum_{n}\left\langle X_{i} \mid n\right\rangle \mathrm{e}^{-t E_{n}}\left\langle n \mid \bar{X}_{j}\right\rangle
$$

$$
\begin{array}{cc}
X_{i} & \text { lattice operator } \\
n & \text { "physical" eigenstate }
\end{array}
$$

Continuum vs. lattice

Correlation functions have discrete energy levels!

Example:
Spectral density of a simple resonance in continuum and the discrete energies for a lattice volume

One cannot arbitrarily fix the energies: they are eigenvalues depending on the control parameters (volume, couplings,...).

Continuum vs. lattice

Correlation functions have discrete energy levels!

Example:

Spectral density of a simple resonance in continuum and the discrete energies for a lattice volume

One cannot arbitrarily fix the energies: they are eigenvalues depending on the control parameters (volume, couplings,...).

Continuum vs. lattice

Correlation functions have discrete energy levels!

Example:
Spectral density of a simple resonance in continuum and the discrete energies for a lattice volume

One cannot arbitrarily fix the energies: they are eigenvalues depending on the control parameters (volume, couplings,...).

Continuum vs. lattice

Correlation functions have discrete energy levels!

Example:

Spectral density of a simple resonance in continuum and the discrete energies for a lattice volume

One cannot arbitrarily fix the energies: they are eigenvalues depending on the control parameters (volume, couplings,...).

Spectroscopy

Ground state spectroscopy

Is correct only for stable particles.
Most hadrons are resonances:
We need to study excited states!

Excited states spectroscopy

Spectroscopy

Ground state spectroscopy

Is correct only for stable particles.
Most hadrons are resonances:
We need to study excited states!

Excited states spectroscopy

Example for an excited state

How to get the energy levels?

Lüscher,Wolff: NPB339(90)222 Michael, NPB259(85)58 See also Blossier et al., JHEP0904(09)094

- Compute all cross-correlations for several lattice operators

$$
C_{i j}(t) \equiv\left\langle X_{i}(t) \bar{X}_{j}(0)\right\rangle
$$

- Solve the eigenvalue problem. The eigenvalues give the energy levels:

$$
\lambda^{(n)}(t) \propto e^{-t E_{n}}\left(1+\mathcal{O}\left(e^{-t \Delta E_{n}}\right)\right)
$$

How to get the energy levels?

Lüscher,Wolff: NPB339(90)222 Michael, NPB259(85)58 See also Blossier et al., JHEP0904(09)094

- Compute all cross-correlations for several lattice operators

$$
C_{i j}(t) \equiv\left\langle X_{i}(t) \bar{X}_{j}(0)\right\rangle
$$

- Solve the eigenvalue problem. The eigenvalues give the energy levels:

$$
\lambda^{(n)}(t) \propto e^{-t \underline{E_{n}}}\left(1+\mathcal{O}\left(e^{-t \Delta E_{n}}\right)\right)
$$

How to get the energy levels?

- Compute all cross-correlations for several lattice operators

$$
C_{i j}(t) \equiv\left\langle X_{i}(t) \bar{X}_{j}(0)\right\rangle
$$

- Solve the eigenvalue problem. The eigenvalues give the energy levels:

$$
\lambda^{(n)}(t) \propto e^{-t \underline{E_{n}}}\left(1+\mathcal{O}\left(e^{-t \Delta E_{n}}\right)\right)
$$

- The eigenvectors are "fingerprints" of the state and allow to identify the "composition" of the state:

$$
\text { overlap factors }\left\langle X_{i} \mid n\right\rangle
$$

Example: Ratios of overlap factors

$B K$ scattering in $J^{P C}=0^{++}$near threshold

CBL, Mohler et al., Physics Letters B 750 (2015) 17

Lattice operators (interpolators) X_{i}

Irreps of cubic group and its little groups contribute to different angular momenta in continuum

Moore \& Fleming , Phys. Rev. D 73, 014504 (2006)
Leskovec, \& Prelovsek, PR D85 (2012) 114507
Göckeler et al., PR D 86, 094513 (2012)
Construction of lattice operators by projection from continuum (subduction)

Dudek et al. (HSC), Phys. Rev. D 82, 034508 (2010)

Construction of multi-particles states

Moore et al., Phys. Rev. D 74, 054504 (2006)
Thomas et al. (HSC),Phys. Rev. D 85, 014507 (2012)
Wallace [arXiv:1506.05492]

Femto universe

Femto universe

Euclidean t

Edwards et al. (HSC) Phys.Rev. D87, 054506 (2013). Edwards et al. (HSC) PR D 84, 074508 (2011)

Beyond the single hadron approximation

Spectroscopy

Ground state spectroscopy

Is correct only for stable particles. Single hadron approach qqq or qq is valid only below scattering threshold ("bound states" or "artificial bound states")

Resonances and bound states

> require inclusion of hadron-hadron channels in the calculation.
> Multi-hadron approach: we need to extend the space of operators to multi-hadron operators: (qq)(qq),(qqq)(qq),(qqq)(qqq)...

What is the challenge?

More terms

More quark propagators
Backtracking loops are expensive!
"All-to-all propagators":

- Stochastic sources
- Distillation

Peardon et al. (HSC), PR D 80, 054506 (2009).
Morningstar et al., PR D 83, 114505 (2011).

Energy levels \rightarrow Phase shift points (in the elastic region)

Lüscher, CMP 105(86) 153, NP B354 (91) 531, NP B 364 (91) 237

$$
\mathrm{e}^{\mathrm{i} k L}=1 \quad \longrightarrow k_{n}=2 n \pi / L
$$

(e.g. for $\mathrm{L}=3 \mathrm{fm}$:
$k_{1}=400 \mathrm{MeV}$)

$$
V=\text { const } . \quad \delta=0
$$

Cf., 2d resonance example:
Gattringer \& cbl, NPB391 (93) 463

Energy levels \rightarrow Phase shift points (in the elastic region)

Lüscher, CMP 105(86) 153,
NP B354 (91) 531, NP B 364 (91) 237

periodic b.c.

$$
\mathrm{e}^{\mathrm{i} k L}=1 \quad \longrightarrow k_{n}=2 n \pi / L
$$

(e.g. for $\mathrm{L}=3 \mathrm{fm}$:
$k_{1}=400 \mathrm{MeV}$)

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{i} k L+2 \mathrm{i} \delta(k)}=1 \\
& \quad \rightarrow 2 \delta\left(k_{n}\right)=2 n \pi-k_{n} L
\end{aligned}
$$

Cf., 2d resonance example:
Gattringer \& cbl, NPB391 (93) 463

Energy levels and phase shifts

without interaction
with interaction

The energy levels depend on the spatial volume.

Resonance region: avoided level crossing

Energy levels and phase shifts

without interaction

with interaction

The energy levels depend on the spatial volume.

Resonance region: avoided level crossing

Energy levels and phase shifts

without interaction

with interaction

The energy levels depend on the spatial volume.

Resonance region: avoided level crossing

Energy levels and phase shifts

without interaction

with interaction

The energy levels depend on the spatial volume.

Resonance region: avoided level crossing

From energy levels to phase shifts

(in the elastic region)

$$
\begin{gathered}
\operatorname{Re}\left(f^{-1}\right)-c \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)=0 \\
L \\
f_{\ell}^{-1}(s)=\rho(s) \cot \delta_{\ell}(s)-\mathrm{i} \rho(s)
\end{gathered}
$$

Energy levels $E_{n} \rightarrow$
$\rho \cot \delta \rightarrow \delta\left(E_{n}\right)$

From energy levels to phase shifts
(in the elastic region)

$$
\begin{gathered}
\operatorname{Re}\left(f^{-1}\right)-c \mathcal{Z}_{00}\left(1 ;\left(\frac{p L}{2 \pi}\right)^{2}\right)=0 \\
f_{\ell}^{-1}(s)=\rho(s) \cot \delta_{\ell}(s)-\mathrm{i} \rho(s)
\end{gathered}
$$

Energy levels $E_{n} \rightarrow$
$\rho \cot \delta \rightarrow \delta\left(E_{n}\right)$

"Lüscher curves"

From energy levels to phase shifts
(in the elastic region)

Energy levels $\mathrm{E}_{\mathrm{n}} \rightarrow$
$\rho \cot \delta \rightarrow \delta\left(E_{n}\right)$

From energy levels to phase shifts
(in the elastic region)

Continuation below threshold: Bound states?

Example: DK scattering in $\mathrm{J}^{\mathrm{PC}}=0^{++}$near threshold

How to get more points?

Low lying levels have smaller statistical errors
Several volumes (expensive)

Modified boundary conditions

$V_{1} V_{2} V_{3}$

Moving frames (operators with
 momentum)

Moving frames

Rummukainen, Gottlieb: NP B 450(I995) 397 Kim, Sachrajda,Sharpe: NP B 727 (2005) 218 Feng, Jansen, Renner: PoS LATIO (2010) 104 Fu, PR D85 (20I2) 014506
Leskovec, Prelovsek, PR D85 (2012) II4507
Göckeler et al., PR D 86, 0945 I3 (20I2)
Döring et al., Eur.Phys.J.A48 (2012)II4

	Relativistic distortion	Symmetry group
$\vec{p}=(0,0,0)$	O_{h}	
$\vec{p}=(1,1,0)$	$D_{4 d}$	

Results: light quarks

Example: $\pi \pi \rightarrow \rho \rightarrow \pi \pi$ in the elastic region

Xu Feng et al. (ETMC), PR D83, 094505 (20II), arXiv:IOII. 5288 [hep-lat].
J. Frison et al. (BMW-c), PoS LATTICE20IO, I39 (2010), arXiv:IOII.34I3 [hep-lat].

CBL, D. Mohler et al., PR D84, 054503 (201I),
[Err.: PR D 89 (2014) 059903(E)], arXiv: I I 05.5636 [hep-lat].
S.Aoki et al. (PACS-CS), PR D84, 094505 (20II), arXiv:II 06.5365 [hep-lat].
C. Pelissier et al., PR D87, 0 I 4503 (20|3), arXiv: I 2 I I 0092 [hep-lat].
J.J. Dudek et al. (HSC), PR D87, 034505 (20I3),
[Err.: PRD90 (2014) 099902(E)], arXiv:I2I2.0830 [hep- ph].
B. Fahy et al., PoS LATTICE20I4, 077 (20I5), arXiv: 1410.8843 [hep-lat].
D. J.Wilson et al., (HSC), (20I5), arXiv:I 507.02599 [hep-ph].

Example: $\pi \pi \rightarrow \rho \rightarrow \pi \pi$ in the elastic region

Xu Feng et al. (ETMC), PR D83, 094505 (20II), arXiv:IOII. 5288 [hep-lat].
J. Frison et al. (BMW-c), PoS LATTICE20I0, I39 (2010), arXiv:IOII.34I3 [hep-lat].
CBL, D. Mohler et al., PR D84, 054503 (20II),
[Err.: PR D 89 (2014) 059903(E)], arXiv:I I 05.5636 [hep-lat].
S.Aoki et al. (PACS-CS), PR D84, 094505 (20II), arXiv:I I06.5365 [hep-lat].
C. Pelissier et al., PR D87, 0 I 4503 (20|3), arXiv: I 2 I I 0092 [hep-lat].
J.J. Dudek et al. (HSC), PR D87, 034505 (20I3),
[Err.: PRD90 (2014) 099902(E)], arXiv:I2I2.0830 [hep- ph].
B. Fahy et al., PoS LATTICE20I4, 077 (20I5), arXiv: I4I0.8843 [hep-lat].
D. J.Wilson et al., (HSC), (20I5), arXiv:I 507.02599 [hep-ph].
Moving frames, 18 lattice operators
Coupled $\pi \pi$, KK system

Example: $\pi \pi \rightarrow \rho \rightarrow \pi \pi$

Up to 18ρ and πT operators $\mathrm{P}=(000),(00 \mathrm{I}),(0 \mathrm{II})$

CBL, Mohler, Prelovsek,Vidmar;
 PR D 84, 054503 (201I)
Erratum PR D 89 (2014) 059903(E)

Example: $\pi \pi \rightarrow \rho \rightarrow \pi \pi$

Up to 18ρ and πT operators $\mathrm{P}=(000),(00 \mathrm{I}),(0 \mathrm{II})$

CBL, Mohler, Prelovsek,Vidmar;
PRD 84, 054503 (201I)
Erratum PR D 89 (2014) 059903(E)

Example: $\pi \pi \rightarrow \rho \rightarrow \pi \pi$

$$
\begin{aligned}
m_{\pi} & =266(3)(3) \mathrm{MeV} \\
m_{\rho} & =772(6)(8) \mathrm{MeV} \\
g_{\rho \pi \pi} & =5.61(12) \\
g_{\rho \pi \pi, e x p} & =5.96
\end{aligned}
$$

CBL, Mohler, Prelovsek,Vidmar;
PRD 84, 054503 (201I)
Erratum PR D 89 (2014) 059903(E)

Beyond the elastic region: coupled channels

"..to boldly go, where.."

Extension to several coupled channels

Matrices T, Z:

$$
\operatorname{det}\left[T^{-1}-Z\right]=0
$$

Bernard et al ., JHEP 1101 (2011) 019 [arXiv:1010.6018]
Briceno et al ., PR D 88, 034502 (2013)
Briceno et al , PR D 88, 094507 (2013)
Briceno et al ., PR D 89, 074507 (2014)
Hansen \& Sharpe, PR D86 (2012) 016007[arXiv:1204.0826]
Briceno et al., PR D 91, 034501 (2015)
two nucleons
moving multichannels
arbitrary spin
$1 \rightarrow 2$ transitions

Example: $(\pi \pi, \mathrm{K} \underline{K}) \rightarrow \rho \rightarrow(\pi \pi, \mathrm{K} \underline{K})$

Comparison with BW-fit to experiment

Resonance or bound state

$$
p \cot \delta \sim \frac{1}{g^{2}}\left(m_{R}^{2}-s\right)
$$

Resonance or bound state

$$
p \cot \delta \sim \frac{1}{g^{2}}\left(m_{R}^{2}-s\right)
$$

Light quark sector (with meson-meson operators)

$\left(\rho \pi, a_{1}\right),\left(\omega \pi, b_{1}\right)$
Scattering lengths and resonance parameters:
CBL, Leskovec et al., JHEP 04 (2014) 162; arXiv:1401.2088 [hep-lat]
($\pi \mathrm{K}, \mathrm{k}, \mathrm{K}^{*}$)
Scattering lengths:
S.R.Beane et al.,PR D 74, 114503 (2006).
Z. Fu and K. Fu, PR D86, 094507 (2012), arXiv:1209.0350 [hep-lat].

Phase shifts:
S. Prelovsek et al., PR D88, 054508 (2013), arXiv:1307.0736 [hep-lat].
J. J. Dudek et al. (HSC), PRL 113, 182001 (2014), arXiv:1406.4158 [hep-ph].
D. J. Wilson et al. (HSC), PR D91, 054008 (2015), arXiv:1411.2004 [hep-ph].

Кл scattering and the K^{*} width

CBL, Leskovec, Prelovsek, Mohler,

PR D88 (2013) 054508, arXiv: 1307.0736
and PoS Lattice2013 (2013) 260; arXiv:1310.4958

Resonances in coupled $\pi K, \eta K$ scattering

J. J. Dudek et al. (HSC), PRL 113, 182001 (2014), arXiv:1406.4158 [hep-ph].
D. J. Wilson et al. (HSC), PR D91, 054008 (2015), arXiv:1411.2004 [hep-ph].

K-matrix parametrisation to lattice spectrum ($m_{\pi}=391 \mathrm{MeV}, m_{k}=549 \mathrm{MeV}$)

CBL\&Verduci, PRD87 (2013) 054502 5-quark operators

Baryons: $\mathrm{N} \pi$

[arXiv:1212.5055] and 29 contraction terms (negative parity)

CBL\&Verduci, PRD87 (2013) 054502 5-quark operators

Baryons: $N \pi$ (negative parity) $\quad N \rightarrow N \pi, N \pi \rightarrow N$ and 29 contraction terms $N \pi \rightarrow N \pi$

The background is fully dynamical quarks and gluons

$\pi \mathrm{N}$: Effect of open 2-hadron channel?

CBL\&Verduci, PRD87 (2013) 054502 [arXiv:1212.5055]
needs annihilation terms

See also Kiratidis et al., PR D 91, 094 (2015) [arXiv: 1501.07667]

Wanted: Coupled channel analysis (N $\uparrow, \wedge K, \Delta \pi) \ldots$

Results: heavy quarks

(with meson-meson operators)

What is the effect of nearby thresholds?

Example: DD threshold and $\psi(3770)$ Example:DK and $D^{*} K$ in $\left.D_{s n}{ }^{*}\right)$

Are there new states?

Example: "level hunting": X(3872) and Z(3900)

Charmonium

$\psi(3770)$: resonance close to $D \underline{D}$ threshold

Lattice study: D volumes and $m_{\pi}=266$ and 157 MeV

15 interpolators of cc type 2 operators of type Dㅁ

CBL et al., JHEP (2015) [arXiv:1503.05363]
[same paper:
$\eta_{c 0}(2 P)$ or $X(3915)$: 0^{++} controversial signal]

	$\psi(3770), \mathrm{m}_{\mathrm{R}}$	g (no unit)	$\psi(2 S), m_{R}$
$\mathrm{m}_{\pi}=\mathbf{2 6 6 ~ M e V}$	3774(6)(10)	9.7(1.4)	3676(6)(9)
$\mathrm{m}_{\pi}=157 \mathrm{MeV}$	3789(68)(10)	28(21)	3682(13)(9)
Exp.	3773.15(33)	18.7(1.4)	3686.11(1)

X(3872)

$X(3872) 0^{+}\left(1^{++}\right)$

[1] Prelovsek/Leskovec, Phys. Rev. Lett. 111, 192001 (2013)
[2] Lee et al. (FNAL/MILC), [arXiv:1411.1389]
[3] Padmanath et al,Phys. Rev. D 92 (2015) 034501
[arXiv:1503.03257]
at $\mathrm{m}_{\pi}=266 \mathrm{MeV}$
22 ç and ccuu,ccud,..interpolators for $\mathrm{I}=0$ and 1
(DD', $J / \psi \rho, J / \psi \omega, \eta_{c} \sigma, \chi_{c o} \pi, \chi_{c 2} \pi, 4 q$)
all observe $\mathrm{X}(3872)$ closely below DD^{*} (with strong cc component)

(large scatt.length 1.1 fm)

Heavy-light sector: $\mathrm{D}_{\mathrm{s}}\left(0^{+}, 1^{+}, 2^{+}\right)$

CHARMED, STRANGE MESONS

Particles

l	
$D_{s}^{ \pm}$	
$D_{s}^{* \pm}$	$\mathrm{HQL}:$
$D_{s 0}^{*}(2317)^{ \pm}$	s-wave
$D_{s 1}(2460)^{ \pm}$	s-wave
$D_{s 1}(2536)^{ \pm}$	d-wave
$D_{s 2}^{*}(2573)$	d-wave
$D_{s 1}^{*}(2700)^{ \pm}$	
$D_{s J}^{*}(2860)^{ \pm}$	
$D_{s J}(3040)^{ \pm}$	

(PACS-CS lattices. $\mathrm{m}_{\pi}=157 \mathrm{MeV}$
Lattice operatorscs,DK, D*K)

See also Martinez Torres et al., JHEP 1505 (2015) 153

Heavy-light sector: $\mathrm{D}_{\mathrm{s}}\left(0^{+}, 1^{+}, 2^{+}\right)$

CHARMED, STRANGE MESONS

Particles

$D_{s}^{ \pm}$	
$D_{s}^{* \pm}$	HQL:
$D_{s 0}^{*}(2317)^{ \pm}$	s-wave
$D_{s 1}(2460)^{ \pm}$	s-wave
$D_{s 1}(2536)^{ \pm}$	d-wave
$D_{s 2}^{*}(2573)$	d-wave
$D_{s 1}^{*}(2700)^{ \pm}$	
$D_{s J}^{*}(2860)^{ \pm}$	
$D_{s J}(3040)^{ \pm}$	

(PACS-CS lattices. $\mathrm{m}_{\pi}=157 \mathrm{MeV}$
Lattice operatorscs,DK, D*K)

See also Martinez Torres et al., JHEP 1505 (2015) 153

Mohler et al.,PRL. 111, 222001; (2013)[arXiv 1308.3175];

CBL et al., Phys. Rev. D 90, 034510 (2014)

Heavy-light sector: $\mathrm{D}_{\mathrm{s}}\left(0^{+}, 1^{+}, 2^{+}\right)$

CHARMED, STRANGE MESONS

Particles

$D_{s}^{ \pm}$	
$D_{s}^{* \pm}$	HQL:
$D_{s 0}^{*}(2317)^{ \pm}$	s-wave
$D_{s 1}(2460)^{ \pm}$	s-wave
$D_{s 1}(2536)^{ \pm}$	d-wave
$D_{s 2}^{*}(2573)$	d-wave
$D_{s 1}^{*}(2700)^{ \pm}$	
$D_{s J}^{*}(2860)^{ \pm}$	
$D_{s J}(3040)^{ \pm}$	

(PACS-CS lattices. $\mathrm{m}_{\pi}=157 \mathrm{MeV}$
Lattice operatorscs,DK, D*K)

See also Martinez Torres et al., JHEP 1505 (2015) 153

Mohler et al.,PRL. 111, 222001; (2013)[arXiv 1308.3175];

CBL et al., Phys. Rev. D 90, 034510 (2014)

Heavy quark sector: $\mathrm{B}_{\mathrm{s}}\left(0^{+}, 1^{+}, 2^{+}\right)$

CBL et al., Phys. Lett. B 750 (2015) 17 [arXiv:1501.01646]
$B K, B^{*} K$ scattering (PACS-CS lattices, $m_{\pi}=157 \mathrm{MeV}$)
0^{+}: Bound state $\mathrm{B}_{\mathrm{s} 0}$ with $m\left(B_{s 0}\right)=5.711(13)(19) \mathrm{GeV}$ (prediction)

1^{+}: Bound state $B_{s 1}$ with $m\left(B_{s 1}\right)=5.750(17)(19) \mathrm{GeV}$ (prediction)
Close to threshold weakly coupled state $\mathrm{B}_{\mathrm{s} 1}{ }^{\prime}$ at $\mathrm{m}=5.831(9)(6) \mathrm{GeV}$ (Exp: $\mathrm{B}_{\mathrm{s} 1}(5830)$ at $5.8287(4) \mathrm{GeV}$)

The future

...has started already
Two nucleon scattering
Berkowitz et al. (CalLat),[arXiv:1508.00886]
$m_{\pi}=800 \mathrm{MeV}$ (u,d,s flavor symmetric limit) spatial extent up to 4.6 fm
partial-waves: S, P, D, F

no backtracking quarks!

Radiative decays
Briceño et al. [arXiv:1507.06622]

$$
\pi \gamma^{*} \rightarrow \rho \rightarrow \pi \pi
$$

Here ρ is a resonance $\mathrm{m}_{\pi}=400 \mathrm{MeV}$

...has started already

More than two particle states

Extension to 3-particle channels

Hansen \& Sharpe,PR D 90, 116003 (2014) [arXiv:1408.5933]
Meißner et al.,PRL 114, 091602 (2015) [arXiv:1412.4969]
Hansen \& Sharpe, [arXiv:1504.04248]
But: No numerical results yet!

The Future?

The Future?

Prediction is very difficult, especially about the future (Niels Bohr)
(according to https://en.wikiquote.org/wiki/Niels Bohr)

The Future?

Prediction is very difficult, especially about the future (Niels Bohr)
(according to https://en.wikiquote.org/wiki/Niels Bohr)

You shouldn't believe all, that you find in the internet (Albert Einstein)

Thank you!

