Resonant Structures in $J/\psi \ p$ The LHCb Pentaquark Candidates

Sebastian Neubert

Heidelberg University

Workshop Resonances in QCD October 14th 2015

- Initial goal: a precise measurement of the $\Lambda_{\rm b}$ lifetime
- 1 fb^{-1} of $\Lambda_b \rightarrow J/\psi pK$ + previous measurements: $\tau = 1.482 \pm 0.018 \pm 0.012 \, ps$ \hookrightarrow PRL111(2013)102003

Ф

A Surprise in $\Lambda_{\rm b}$ Decays

Initial goal: a precise measurement of the $\Lambda_{\rm b}$ lifetime ■ 1 fb^{-1} of $\Lambda_{\rm b} \rightarrow J/\psi_{\rm p}K$ + previous measurements: $\tau = 1.482 \pm 0.018 \pm 0.012 \text{ ps}$ → PRL111(2013)102003

 \hookrightarrow arXiv:1509.00292 (submitted to Chin. Phys. C)

 $\sigma(\Lambda_{\rm b})\mathcal{B}(\Lambda_{\rm b} \to J/\psi pK) =$ $6.12 \pm 0.10 \pm 0.25$ mb @7 TeV $7.51 \pm 0.08 \pm 0.31$ nb @8 TeV

 $\mathcal{B}(\Lambda_{\rm b} \rightarrow J/\psi \,\mathrm{pK}) =$ $3.04 \pm 0.04 \pm 0.06 \pm 0.33^{+0.34}_{-0.27}$

(additional systematic uncertainties

from B \rightarrow J/ ψ K^{*} and $f_{\Lambda_{i}}/f_{d}$)

A Surprise in Λ_b Decays

- Initial goal: a precise measurement of the Λ_b lifetime
 1 fb⁻¹ of Λ_b → J/ψpK + previous measurements: τ = 1.482 ± 0.018 ± 0.012 ps → PRLIII(2013)102003
- **But** looking closer at the $J/\psi \ge K$ Dalitz-Plot with a dataset of $3 fb^{-1}$ (Run I)

A Surprise in Λ_b Decays

- Initial goal: a precise measurement of the Λ_b lifetime
 1 fb⁻¹ of Λ_b → J/ψpK + previous measurements: τ = 1.482 ± 0.018 ± 0.012 ps → PRLIII(2013)102003
- **But** looking closer at the $J/\psi \ge K$ Dalitz-Plot with a dataset of $3 fb^{-1}$ (Run I)

→ PRL115(2015)072001

 Φ

→ PRL115(2015)072001

 Φ

Щ¢.

Known Λ^* States

						2 Fit-Mod	dels used!
	State	J ^p	PDG class	Mass (MeV)	Г (MeV)	# Reduced	# Extended
	$\Lambda^{*}(1405)$	1/2-	****	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3 ℓ <i>s</i> cou	ıplings 4
anchor \rightarrow	$\Lambda^*(1520)$	3/2-	****	1519.5 ± 1.0	15.6 ± 1.0	5	6
	$\Lambda^*(1600)$	1/2+	***	1600	150	3	4
	$\Lambda^*(1670)$	1/2-	****	1670	35	3	4
	$\Lambda^*(1690)$	3/2-	****	1690	60	5	6
	$\Lambda^*(1710)$	1/2+	*	1713 ± 13	180 ± 40	0	0
	$\Lambda^*(1800)$	1/2-	***	1800	300	4	4
	$\Lambda^*(1810)$	1/2+	***	1810	150	3	4
	$\Lambda^*(1820)$	5/2 ⁺	****	1820	80	1	6
	$\Lambda^*(1830)$	5/2-	****	1830	95	1	6
	$\Lambda^*(1890)$	3/2+	****	1890	100	3	6
	$\Lambda^*(2000)$?	*	≈ 2000	?	0	0
	$\Lambda^*(2020)$	7/2 ⁺	*	≈ 2020	?	0	0
	$\Lambda^*(2050)$	3/2-	*	2056 ± 22	493 ± 60	0	0
	$\Lambda^*(2100)$	7/2-	****	2100	200	1	6
	$\Lambda^*(2110)$	5/2 ⁺	***	2110	200	1	6
	$\Lambda^*(2325)$	3/2-	*	≈ 2325	?	0	0
	$\Lambda^*(2350)$	9/2 ⁺	***	2350	150	0	6
	$\Lambda^{*}(2585)$?	**	≈ 2585	200	0	6

Isobarmodel Helicity Amplitudes for $\Lambda_{ m b} o { m J}/\psi \Lambda^*$

Matrix Element \mathcal{M}^{Λ^*} is a function of 5 angles and one mass $m_{
m pK}^2$

Ð

Isbarmodel Helicity Amplitudes for $\Lambda_{ m b} o { m J}/\psi \Lambda^*$

Ð.

Resonance parametrisation

Dynamical Terms $R_n(m_{Kp})$ given by

- **Relativistiv, single-channel Breit-Wigner amplitudes** $BW(M_{Kp}|M_0^{\Lambda_n^*}, \Gamma_0^{\Lambda_n^*})$
- \blacksquare special case $\Lambda(1405)$ is subthreshold: Flatté (K p and Σ π channels)
- Blatt-Weiskopf barrier factors $B'_{\ell}(p, p_0, d)$

$$R_{n}(M_{Kp}) = B'_{\ell_{\Lambda_{b}}^{\Lambda_{n}^{*}}}(p, p_{0}, d) \left(\frac{p}{M_{\Lambda_{b}}}\right)^{\ell_{\Lambda_{b}}^{\Lambda_{n}^{*}}} \times BW(M_{Kp}|M_{0}^{\Lambda_{n}^{*}}, \Gamma_{0}^{\Lambda_{n}^{*}}) \times B'_{\ell_{\Lambda_{n}}^{*}}(q, q_{0}, d) \left(\frac{q}{M_{0}^{\Lambda_{n}^{*}}}\right)^{\ell_{\Lambda_{n}^{*}}} BW(M|M_{0}, \Gamma_{0}) = \frac{1}{M_{0}^{2} - M^{2} - iM_{0}\Gamma(M)},$$

where

Ū.

$$\Gamma(M) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2\ell_{\Lambda^*}+1} \frac{M_0}{M} B'_{\ell_{\Lambda^*}}(q, q_0, d)^2.$$

p(q) are momenta of the daughter particles in the rest-frame of the decaying particle. $p_0(q_0)$ calculated on the nominal resonance mass

2 Fitters - Background Treatment

Log-likelihood fitters:

- sFit : subtract background with the sWeight method
- cFit : explicitly model background from sidebands (default)
- Both fitters give comparable results

Results with only Λ^* States

cFit with extended Λ^* model (14 states allowed):

• Λ^* reflections don't explain the structure in $m_{J/\psi_{\rm D}}$

D

Could the Structure in ${ m J}/\psi~{ m p}$ be an Artifact?

 Background modelled from sidebands and from sWeights (5.4% within signal region)

Peaking backgrounds?

- B reflections vetoed
- Partially reconstructed higher B-Baryon resonances excluded
- Could some protons be µ⁺? (similar problems in past pentaquark analyses)
 Explicitely checked and found to be completely negligible

No hint for Ξ_b in $J/\psi \ge K \pi$

Adding Helicity Amplitudes for $\Lambda_{\rm h} \rightarrow P_c {\rm K}$

Helicities of final state particle have to be evaluated in the same reference system!

D

Results with One J/ψ p Resonance

Extended Λ^* model + 1 $J/\psi~{\rm p}$ resonance (floating mass and width) with $J^P=5/2^+$

Improvement w.r.t to fit without P_c : $\sqrt{\Delta 2 \mathcal{L}} = 14.7 \sigma$

Why a second state with opposing parity?

- The peaking structure in $m_{J/\psi p}$ is asymmetric as a function of $\cos \theta_{P_c}$
- This can be explained by interference of two states with opposing parity
- Toy simulation:

Resonant Structures in ${
m J}/\psi~{
m p}$

Why a second state with opposing parity?

- The peaking structure in $m_{J/\psi p}$ is asymmetric as a function of $\cos \theta_{P_c}$
- This can be explained by interference of two states with opposing parity
- Toy simulation:

Resonant Structures in J/ψ p

Results with 2 J/ψ p Resonances

Improvement w.r.t to fit without $P_c: \sqrt{\Delta 2\mathcal{L}} = 18.7\sigma$ Adding further states (also in J/ψ K) did not improve the fit significantly

D

Fit Projections

Angular distributions

 $m_{{
m J}/\psi{
m p}}$ in bins of $m_{{
m Kp}}$

 Φ

Extracted Resonance Parameters

State	Mass [MeV]	Width [MeV]	fav. J ^P	Fit fraction	Signi.
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$3/2^{-}$	$(8.4 \pm 0.7 \pm 4.2)$ %	9σ
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	$5/2^{+}$	$(4.1 \pm 0.5 \pm 1.1)$ %	12σ

- Reduced fit model used for central values
- Significances evaluated on Toy-MC samples: $-2 \ln \mathcal{L}$ distributions consistent with χ^2 distribution \rightarrow p-value

Spin-parity assignment not conclusive:

Fit	$\Delta(-2\ln\mathcal{L})$	P_c (Low) Mass	P_c (Low) Γ	P_c (High) Mass	P_c (High) Γ
$\frac{3}{2}^{-}, \frac{5}{2}^{+}$	0	4.3799 ± 0.0064	0.205 ± 0.011	4.4498 ± 0.0017	0.0387 ± 0.0037
$\frac{3}{2}^+$, $\frac{5}{2}^-$	0.9^{2}	4.3696 ± 0.0063	0.211 ± 0.012	4.4504 ± 0.0017	0.0492 ± 0.0040
$\frac{5}{2}^+, \frac{3}{2}^-$	2.3^{2}	4.3770 ± 0.0098	0.239 ± 0.024	4.4486 ± 0.0018	0.0444 ± 0.0053

Extracted Resonance Parameters

State	Mass [MeV]	Width [MeV]	fav. J ^P	Fit fraction	Signi.
$P_{c}(4380)^{+}$	$4380\pm8\pm29$	$205\pm18\pm86$	$3/2^{-}$	$(8.4 \pm 0.7 \pm 4.2)$ %	9 σ
$P_{c}(4450)^{+}$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	$5/2^{+}$	$(4.1 \pm 0.5 \pm 1.1)$ %	12σ

- Reduced fit model used for central values
- Significances evaluated on Toy-MC samples: $-2 \ln \mathcal{L}$ distributions consistent with χ^2 distribution \rightarrow p-value
- Spin-parity assignment not conclusive:

Fit	$\Delta(-2\ln\mathcal{L})$	P_c (Low) Mass	<i>P_c</i> (Low) Γ	P_c (High) Mass	P_c (High) Γ
$\frac{3}{2}^{-}, \frac{5}{2}^{+}$	0	4.3799 ± 0.0064	0.205 ± 0.011	4.4498 ± 0.0017	0.0387 ± 0.0037
$\frac{3}{2}^+, \frac{5}{2}^-$	0.9^{2}	4.3696 ± 0.0063	0.211 ± 0.012	4.4504 ± 0.0017	0.0492 ± 0.0040
$\frac{5}{2}^+$, $\frac{3}{2}^-$	2.3^{2}	4.3770 ± 0.0098	0.239 ± 0.024	4.4486 ± 0.0018	0.0444 ± 0.0053

• Λ^* states fit-fractions:

$$\Lambda(1405) \to pK \quad (15 \pm 1 \pm 6)\%$$

 $\Lambda(1520) \to pK \quad (19 \pm 1 \pm 4)\%$

Systematic Uncertainties

Source		MeV)	MeV) Γ_0 (MeV) Fit fractio		fractions (ions (%)		
	low	high	low	high	low	high	$\Lambda^*(1405)$	$\Lambda^*(1520)$
Extended vs. reduced	21	0.2	54	10	3.14	0.32	1.37	0.15
Λ^* masses & widths	7	0.7	20	4	0.58	0.37	2.49	2.45
Proton ID	2	0.3	1	2	0.27	0.14	0.20	0.05
$10 < p_p < 100 \text{GeV}$	0	1.2	1	1	0.09	0.03	0.31	0.01
Non-resonant	3	0.3	34	2	2.35	0.13	3.28	0.39
Separate sidebands	0	0	5	0	0.24	0.14	0.02	0.03
J^{P} (3/2 ⁺ , 5/2 ⁻) or (5/2 ⁺ , 3/2 ⁻)	10	1.2	34	10	0.76	0.44		
$d = 1.5 - 4.5 \; \mathrm{GeV}^{-1}$	9	0.6	19	3	0.29	0.42	0.36	1.91
$\ell_{\Lambda_{\rm b}}^{P_c} \Lambda_{\rm b} \to P_c^+ (\text{low/high}) K^-$	6	0.7	4	8	0.37	0.16		
$\ell_{P_{c_{c}}} P_{c}^{+}$ (low/high) $\rightarrow J/\psi p$	4	0.4	31	7	0.63	0.37		
$\ell_{\Lambda_{\rm b}}^{\Lambda_{n}^{*}} \Lambda_{\rm b}^{*} \to {\rm J}/\psi \Lambda^{*}$	11	0.3	20	2	0.81	0.53	3.34	2.31
Efficiencies	1	0.4	4	0	0.13	0.02	0.26	0.23
Change $\Lambda^*(1405)$ coupling	0	0	0	0	0	0	1.90	0
Overall	29	2.5	86	19	4.21	1.05	5.82	3.89
sFit/cFit cross check	5	1.0	11	3	0.46	0.01	0.45	0.13

Extracting the Phase

■ Replace the Breit-Wigner amplitude in the model with complex valued cubic spline *A* in 6 bins of $m^2(J/\psi_P)$, centered around the *P_c* peaks from nominal fit

- Amplitude in complex plane
- Circular shape corresponds to resonant phase motion (anti-clockwise)
- In red: BW amplitude from nominal fit
- Offset in phase from reference amplitude(s)

Where to go from here?

What causes these resonant structures in ${ m J}/\psi$ p?

- Nalence quark content of the $J/\psi p$ system is trivial
- Why a resonance? What are the relevant degrees of freedom?

Proposed paradigms and a "thresholds deja-vu":

- Rescattering effects
- Meson-Baryon Molecules
- Pentaquarks in the Di-Quark model

[MeV]	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
$\Sigma_{c}^{*+}\overline{\mathrm{D}}^{0}$	4382.3 ± 2.4	
$\chi_{c1}(1P)p$		4448.93 ± 0.07
$\Lambda_{ m c}^{+*}\overline{ m D}{}^{0}$		4457.09 ± 0.35
$\Sigma_{\rm c} \overline{\rm D}^{0*}$		4459.9 ± 0.5
$\Sigma_{ m c}\overline{ m D}{}^{0}\pi^{0}$		4452.7 ± 0.5

Past literature suggesting generating mechanisms

Tight binding	Phys. Rev. D 15, 267 (1977)
	Nucl. Phys.B123, 507 (1977).
	Nucl. Phys. B145, 119 (1978)
	Phys. Rev. D 20, 748 (1979)
Di-quark models	Phys. Lett. B 575, 249 (2003)
	Phys. Rev. Lett. 91, 232003 (2003)
	Phys. Rev. D 71, 014028 (2005)
	Mod. Phys. Lett. A 27, 1250006(2012)
Coupled Channels	Nuclear Physics A 763 (2005) 90-139
	Phys. Rev. Lett. 105, 232001 (2010)
Baryon-Meson Molecules	Phys. Rev. Lett. 38, 317 (1977)
	Phys. Rev. Lett. 67, 556 (1991)
	Z. Phys. C 61, 525 (1994)
	Phys. Rev. C 84, 015203 (2011)
	Chin. Phys. C 36, 6 (2012)
	arXiv:1506.06386

Ū,

 $\hookrightarrow arXiv: 1507.04950$

 $\hookrightarrow arXiv: 1507.06552$

 $\hookrightarrow arXiv: 1507.07652$

 $\hookrightarrow arXiv: 1507.05359$

Reso	catteriı	ng	eff	ect	ts:	
	(1D)					-

 $\chi_{c1}(1P)p$ rescattering D^*, D_s^*, Σ_c triangle singularity $P_c(4380)$ rescat, $P_c(4450)$ di-quark model Anomalous triangle singularity

Molecules:

Chiral constituent quark model	$\hookrightarrow arXiv: 1507.08046$
Isospin exchange model	$\hookrightarrow arXiv: 1506.06386$
$D^* \Sigma_c$ molecule	$\hookrightarrow arXiv: 1507.04249$

Di-Quark Models:

Dynamical di-quark tri-quark picture Strange and Nonstrange pentaquarks QCD sum rules for $(qq)(qq)(\bar{q})$ Flavour SU(3) in di-quark model P_c masses in di-quark model Coloured constituents

Mini Review on Meson-Baryon composite models: $\hookrightarrow arXiv: 1509.02460$

	P_c^*				I	c
Ī	$\chi_{c1}p$	$\Sigma_c \bar{D}^*$	$\Lambda_c^* \bar{D}$	$J/\psi N^*$	$\Sigma_c^* \bar{D}$	$J/\psi N^*$
$J\!/\!\psi N$	√	√	√	√	~	✓
$\eta_c N$	×	×	√	×	×	×
$J/\psi \Delta$	×	~	×	×	\checkmark	×
$\eta_c \Delta$	×	~	×	×	~~~	×
$\Lambda_c \bar{D}$	✓	[×]	[√]	×	[×]	×
$\Lambda_c D^*$	\checkmark	~	[√]	\checkmark	√	\checkmark
$\Sigma_c D_{-}$	\checkmark	[×]	√	×	[×]	×
$\Sigma_c^* D$	✓	✓	[×]	✓		
$J/\psi N\pi$	×	~	×	√	~	\checkmark
$\Lambda_c D\pi$	×	×	×	×	~	×
$\Lambda_c \bar{D}^* \pi$	×	\checkmark	×	×		
$\Sigma_c^+ \bar{D}^0 \pi^0$	×	\checkmark	\checkmark	×		

Production:

Bottom baryon decays $\hookrightarrow arXiv: 1509.03708$

What are they?

Are there more of their kind?

$P_{c}(4380)$ & $P_{c}(4450)$: a New Sector in Baryon Spectroscopy?

What are they?

• Observe $P_c \rightarrow J/\psi_p$ as subsystems in different final states

- $\blacksquare \Lambda_{\rm b} \rightarrow J/\psi \ {\rm p} \ \pi$
- $\blacksquare \Upsilon \rightarrow J/\psi p \overline{p}$
- $\Lambda_{\rm h} \rightarrow J/\psi \ {\rm p} \ \pi \ {\rm K}_{\rm g}^0$
- Confirmation by other experiments urgently needed!
- Search for new decay modes of P_c
 - $\blacksquare \Lambda_{\rm b} \rightarrow \chi_{\rm c1}(1P) \ {\rm p \ K}$ $\Lambda_{\rm h} \rightarrow \Lambda^+ \overline{\rm D}^0 {\rm K}$
- Are there more of their kind?
 - Explore a possible multiplet of pentaguarks
 - $\blacksquare \Lambda_{\rm b} \rightarrow J/\psi \ {\rm p} \ \pi \ {\rm K}_{\rm S}^0$
 - $\blacksquare \Lambda_{\rm h} \rightarrow J/\psi \Lambda \phi$
 - Triply charged baryons?

What are they?

\blacksquare Observe ${\it P_c} \rightarrow {\rm J}/\psi p$ as subsystems in different final states

Confirmation by other experiments urgently needed!

- Search for new decay modes of P_c
 - $\begin{array}{c} \blacksquare \ \Lambda_{\rm b} \rightarrow \chi_{\rm c1}(1{\rm P}) \ {\rm p} \ {\rm K} \\ \blacksquare \ \Lambda_{\rm b} \rightarrow \Lambda_{\rm c}^+ \ \overline{\rm D}^0 \ {\rm K} \end{array}$

Are there more of their kind?

- Explore a possible multiplet of pentaquarks
 - $\blacksquare~\Lambda_{\rm b} \rightarrow {\rm J}/\psi~{\rm p}~\pi~{\rm K}_{\rm S}^0$
 - $\blacksquare \Lambda_{\rm b} \rightarrow \mathbf{J}/\psi \Lambda \phi$
 - Triply charged baryons?

Testing Rescattering Models: $\Lambda_b \rightarrow \chi_{c1}(1P) p K$

• Guo et al \hookrightarrow arXiv:1507.04950

 Rescattering would not explain a narrow enhancement right above \(\chi_{c1}(1P)) p\) threshold **LHCb** B $\rightarrow \chi_{c1}(1P)K^*$ $\hookrightarrow arXiv:1305.6511$

Pentaquark Isospin Multiplet?

Isospin partner: replacing $u\bar{u}$ with $d\bar{d}$

$$\Lambda_{\rm b} \rightarrow P_c^0 {\rm K}^0 \rightarrow {\rm J}/\psi {\rm n} {\rm K}^0 \quad {\rm or} \quad {\rm J}/\psi {\rm p} \pi^- {\rm K}^0$$

 ${
m p}~\pi^-~{
m K}_{
m S}^0$

D

SU(3) Flavour Multiplet!? Strange partner: replacing $u\bar{u}$ with $s\bar{s}$

Each subsystem exotic

- **J**/ ψ A: Strange Pentaquark
- J/ψ φ: X(4140) ?
- \blacksquare $\Lambda \phi$: Spectrum unexplored

SU(3) Flavour Multiplet!? Strange partner: replacing $u\bar{u}$ with $s\bar{s}$

$$\Lambda_{\rm b} \to P_{cs}^0 \phi \to {\rm J}/\psi \Lambda \phi$$

Each subsystem exotic

- **J**/ ψ A: Strange Pentaquark
- J/ψ φ: X(4140) ?
- **•** $\Lambda \phi$: Spectrum unexplored

Di-quark model suggestions

Maiani et al →arXiv:1507.04980				
Process	$\mathbb{P} \in 10 \oplus 8$			
$\Lambda_{\rm b} \to {\rm K}{\rm J}/\psi{\rm p}$	$\mathbb{P}_{8}(\bar{c}[cq]_{s=1}[q'q'']_{s=0,1}, \ell=0,1)$			
$ \begin{array}{c} \Lambda_{\rm b} \to \pi \mathrm{J}/\psi\Sigma(1385) \\ \Xi_{h} \to \mathrm{K} \mathrm{J}/\psi\Sigma(1385) \end{array} $	$\mathbb{P}_{10}(\bar{c}[cq]_{s=0,1}[q's]_{s=0,1})$			
$\Omega_b^{\rm B} \to \phi {\rm J}/\psi \Omega^-(1672)$	$\mathbb{P}_{10}(\bar{\mathbf{c}}[\mathbf{cs}]_{\mathbf{s}=0,1}[\mathbf{ss}]_{\mathbf{s}=1})$			
$\Omega_b^- \to \mathrm{K} \mathrm{J}/\psi \Xi(1387)$	$\mathbb{P}_{10}(\bar{c}[cq]_{s=0,1}[ss]_{s=1})$			

Search for Triply Charged Baryons P⁺⁺⁺

- If pentaquarks exist we should be able to find huge multiplets
- A striking signature would be a triply charged baryon

Quark content	final state
uuucd	$\Lambda_{\rm b} \to ({\Sigma_{\rm c}}^{++}\pi^+)\pi^-\pi^-\pi^-$
uuucs	$\Lambda_{\rm b} \rightarrow (\Sigma_{\rm c}^{++} {\rm K}^+) \pi^- \pi^- {\rm K}^-$
uuucb	$P^{+++} \rightarrow \Sigma_{\rm c}^{++} {\rm B}^+$
	with ${\Sigma_{\rm c}}^{++} \rightarrow \Lambda_{\rm c}^+ \pi^+$

Λ_b → Λ⁺_cπ⁺π⁺π⁻π⁻π⁻ available in preselection for Run I data set
 Huge inclusive B⁺ → D⁰π⁺ sample preselected

Charm Pentaquarks at PANDA?

HESR: $\mathrm{p}~\overline{\mathrm{p}}$ max $\sqrt{s}pprox 5.6 extsf{GeV}$		
Process	Threshold [MeV]	
$p\overline{p} \rightarrow pJ/\psi\overline{p}$	4966	
$\mathrm{p}\overline{\mathrm{p}} \to \mathrm{p}\eta_\mathrm{c}\overline{\mathrm{p}}$	4854	
$p\overline{p} \to \Lambda_c^+ \overline{D}{}^0 \overline{p}$	5086	
$\overline{p}P_{c}(4450)$	5385	
$\overline{\mathrm{p}}\mathrm{p} \to \mathrm{p}\phi\overline{\mathrm{p}}$	2890	
$\overline{\mathrm{p}}d \rightarrow ??$		

Summary

- First observation of $J/\psi p$ resonances in a full amplitude analysis of $3 fb^{-1} \Lambda_{\rm b} \rightarrow J/\psi_{\rm pK}$ at LHCb \rightarrow PRL115(2015)072001
- Two states of opposite parity required
 - $P_c(4380)^+$: $m = 4380 \pm 8 \pm 29$, $\Gamma = 205 \pm 18 \pm 86$, $J^P = 3/2^-$ or $5/2^+$
 - $P_c(4450)^+$: $m = 4449.8 \pm 1.7 \pm 2.5$, $\Gamma = 39 \pm 5 \pm 19$, $J^P = 5/2^+$ or $3/2^-$
- Resonant phase motion extracted
 - **Consistent with Breit-Wigner for** $P_c(4450)$
 - \square $P_c(4380)$: More complicated (but counter-clockwise phase motion)
- **No** $J/\psi K$ resonances needed
- Starting program to confirm and search for new states
- Confirmation from other experiments needed!

Backup

Table : Pre-selection requirements used. The stripping line is FullDSTDiMuonJpsi2MuMuDetachedLine.

#	Selection variables	Requirements
1	All tracks χ^2 /ndof	< 4
2	Muon PID	$DLL(\mu - \pi) > 0$
3	PT of muon	> 550 MeV
4	PT of hadron	> 250 MeV
5	${ m J}/\psi$ vertex χ^2	< 16
6	J/ψ mass window	$-48 < m(\mu^+\mu^-) - m(J/\psi) < 43$ MeV
7	Hadron $\chi^2_{\sf IP}$	> 9
8	κ^- ID	$DLL(K-\pi) > 0$ and $DLL(p-K) < 3$
9	p ID	$DLL(p - \pi) > 10$ and $DLL(p - K) > 3$
10	$ ho K^-$ vertex χ^2	DOCA $\chi^2 < 16$
11	$\Lambda_{ m b} \chi_{ m IP}^2$	< 25
12	$\Lambda_{ m b}$ vertex χ^2 /ndof	< 10
13	$\Lambda_{ m b}$ flight distance	> 1.5 mm
14	$\Lambda_{ m b}$ pointing, $\cos heta_{ m p}$	> 0.999
15	Trigger	HLT1 and HLT2 TOS on ${ m J}/\psi$ (see text)
16	Clone track rejection on hadron	Ghost probability < 0.2

BDT Classifier

BDT variables:

- minimum DLL($\mu \pi$) of the μ^+ and μ^- (mmPIDmu);
- minimum of the χ^2_{IP} of the K^- and the p [log(pmipCHI2)];
- Λ_b (DIRA);
- $\Lambda_{\rm b} \chi_{\rm IP}^2 \log(\text{BCHI2});$
- $\Lambda_{\rm b}$ FD;
- PT of the $\Lambda_{\rm b}$ (BPT);
- $\Lambda_{\rm b}$ vertex χ^2 (LogBIPCHI2);
- PT sum of the K^- and p (SumPT).
- Trained on signal MC and sideband data for bkg
- Cut optimzed by maximising $S/\sqrt{S+B}$ in data, subsequently tightened to reduce background across DP

Ф

ℓS Couplings

- The angular momentum barrier should suppress decays with high orbital angular momentum.
- Express helicity couplings through ℓS -couplings $B_{\ell S}$ using Clebsch-Gordan coefficients

$$\mathcal{H}_{\lambda_{B},\lambda_{c}}^{A\to B\ C} = \sum_{\ell} \sum_{S} \sqrt{\frac{2\ell+1}{2J_{A}+1}} \times B_{\ell,S} \times \underbrace{\begin{pmatrix} J_{B} & J_{C} & S \\ \lambda_{B} & -\lambda_{C} & \lambda_{B} - \lambda_{C} \end{pmatrix}}_{\text{Spin-Spin coupling}} \times \underbrace{\begin{pmatrix} \ell & S & J_{A} \\ 0 & \lambda_{B} - \lambda_{C} & \lambda_{B} - \lambda_{C} \end{pmatrix}}_{\text{Spin-Orbit coupling}}$$

- Limit the allowed range of ℓ in the fit model
- Automatically implements parity conservation in strong decays by choice of ℓ

Efficiency corrected Signal PDF

- Ω = 6 kinematical variables (m_{Kp} + 5 angles)
- $\vec{\omega}$ = fit parameters (couplings, masses, widths)

$$\frac{d\mathcal{P}}{d\Omega} \equiv \mathcal{P}_{sig}(\Omega | \vec{\omega}) = \frac{1}{CI(\vec{\omega})} \left| \mathcal{M}(\Omega | \vec{\omega}) \right|^2 \Phi(\Omega) \epsilon(\Omega)$$

- Phase space volume element —
- efficiency
- With the normalisation calculated by MC-integration over accepted MC events

$$I(\vec{\omega}) \equiv \int \mathcal{P}_{sig}(\Omega) \, d\Omega \propto \frac{\sum_j w_j^{MC} \left| \mathcal{M}(\Omega_j | \vec{\omega}) \right|^2}{\sum_j w_j^{MC}},$$

■ weights *w*^C_j account for differences inΛ_b production kinematics and PID between simulation and data

Coherent sum over amplitudes, incoherent sum over external helicities
 Set A_b polarisation to 0

$$|\mathcal{M}|^{2} = \sum_{\lambda_{\Lambda_{\mathbf{b}}} = \pm \frac{1}{2}} \sum_{\lambda_{\rho} = \pm \frac{1}{2}} \sum_{\Delta \lambda_{\mu} = \pm 1} \left| \mathcal{M}^{\Lambda^{*}} + \underbrace{e^{i\lambda_{\mu}\alpha_{\mu}}}_{\mu \text{ alignment}} \underbrace{\sum_{\lambda_{\rho}^{P_{c}} = \pm \frac{1}{2}} d^{1/2}_{\lambda_{\rho}^{P_{c}},\lambda_{\rho}}(\theta_{\rho})}_{\text{proton align.}} \mathcal{M}^{P_{c}} \right|^{2}$$

Ð

J/ψ K Dalitz Plot Projections in bins of $m_{\rm pK}$

Ū,

