Power Converters for GSI and FAIR Magnets Fripti Mohite Electric Power Systems/LOEP GSI

24.09.2015; Stored Beam Division Meeting

Particle Accelerator

Electromagnets are there in

- Collider
- Light/Neutron/Ion Sources
- Linear or Open Structures
- Circular or Closed Structures

Power Converter: with Magnet as Load

Power Converter (PC): process and control the flow of electrical energy and supply the voltage and current in the form suitable to the load.

Magnet parameters considered for PC design:

- Inductance
- Resistance
- Current rating
- Operational Requirement (di/dt, Cycle pattern, cycle frequency)
- Accuracy etc.

<u>Stability</u>- Long term drift in I_{L} at fixed load due to ageing, variations in temperature, humidity and grid voltage

<u>Reproducibility</u> of I_{L} : for same I_{set} at different time

PC Design Requirements

The design requirement:

- Meet Specifications
- Reliable and
- Simple Circuit Structure
- Cost Effective

Different Circuit Configurations/Topologies for PC

- Linear Controlled
- Switch Mode SM-1, SM-2 and SM-4
- SCR (Silicon Controlled Rectifier)
- Special Types
- PC with Quench Protection
- Supporting Infrastructure
 - Power Supply System: Power grid
 - PC Control and Protection
 - Cooling: Air and Water
 - Power Cables
 - Building: PC size and General Installation
- Miscellenous

PC Topologies: Linear Controlled Type

								Total 2001 of D
Machine PC Type	UNILAC	SIS	ESR	HEST	Test Bench	Sum	Special feature	
Linear Controlled	178	10	58	16	1	263	10 to 400 A	

- Advantages:
- Good dynamics to reduce current ripple
- Low filter expenses
- Low noise spectrum

Disadvantages:

- ➤ High losses
- Only suitable for dc operation (with auto transformer to reduce losses)

L

UL

 $\rightarrow t$

PC Topologies: Switch Mode (SM) Concept

Machine PC Type	UNILAC	SIS	ESR	HEST	Test Bench	Sum	Special feature
Switch Mode	229	62	32	238	1	562	up to 6 kA

Advantages:

- Good dynamics (depends on output filter)
- Lower losses
- Moderate filter span

Most of the PC at GSI and FAIR are of this type

Disadvantage:

 measures have to be taken to reduce the noise spectrum of UL

Total ≈60% of PC

PC Topologies: SM-1; Chopper Circuit; 1-Quadrant

By varying the turn-on time of V4, mean value of U_L and hence of I_L are set/controlled Only positive output voltage and current are possible (Single quadrant) Standard switching frequency : 20 kHz

PC Topologies: SM-2; Half bridge with Energy Recovery **Example: UNILAC** IL A Fast pulse and Forced damping D3 U V1· 不 L2 L3 t L C2 U 🛦 D2 困 本 V4 (1)(1)

Set value of U_{L} and I_{L} achieved by alternate switching of V1 and V4 It halves the switching loss (half switching frequency per transistor) Only positive I_{L} but positive and negative U_{L} (1. und 4. quadrant) V1 and V4 On $\Rightarrow +U_{L}$; D2 D3 On $\Rightarrow U_{L}$ and energy fed back to dc-link

24Sep2015

(IV)

 (\square)

By alternate switching of pairs V1, V4 and V2, V3 follows the set value of U_{L} and I_{L} It halves the switching loss (half switching frequency per transistor) Positive and negative I_{L} and U_{L} (all 4 quadrants)

I_L pos: V1 and V4 On, + U_L; D2 D3 On, - U_Land energy fed back to dc-link I_L neg: D1 and D4 On, +U_L and energy fed back to dc-link ; V2, V3 On - U_L

In this PC unit:

- Large power , high currents
- Energy recovery to grid
- High reactive power, high harmonics (therefore in SIS/ESR converters have dedicated grid).

With Active filter:

- Low Current ripple and good current dynamics
- Complex circuit/control

With Passive filter:

• High filter size, poor dynamics

PE current is unipolar.

PE contribiute to the load current (30-60A) and keeps the ripples in rectifier current within the limit

Charging Unit : controls the voltage of the main storage capacitor C1

Active Filter: controls the current during flat top (cutting the sine wave at Imax)

Reversing Switch: for polarity change of the power converter

PC Topologies: Example of a Proposed SC Magnet PCs in SIS 100

SC Magnet PC XI: SCR/SM with Quench Protection Unit

Main Components of a Power Unit (PU):

-20 kV transformer

-12 pulse SCR with controlled freewheeling thyristors

-Smoothing inductance

-Active filter (PE)

-Quench protection circuit (Dump Unit, DU and thyristors)

SC Magnet PC XI: SCR/SM with Quench Protection Unit

Under quench, circuit breaker contacts open

Energy from the magnets is absorbed by the dump resistor units

Main Components of a Dump Unit:

Circuit Breaker

Electronic switches 1ms>

Commercial mechanical switches 15-20 ms

Dump Resistor

Dump Unit

PC Topologies: Example of Proposed SC Magnet PCs in SFRS

Proposed Layout of SFRS Dipole Power Converter

Energy from the magnets is absorbed by the dump resistor units

Power Converters at GSI

РС Туре		Γ					
	UNILAC	SIS18	ESR	HEST	Test Bench	Sum	Special feature
Linear Controlled	178	10	58	16	1	263	10 to 400 A
Switch Mode	229	62	32	238	1	562	up to 6 kA (ESR injection)
SCR	3	6	11		4	24	up to 20 kA
Special type Bumpers, fast quads	2	5	1			8	up to 5 kA bumper
Sum	412	83	102	254	6	857	

Additional 30 HV PCs up to 300 kV!

With Current level 10 A to 20 kA ; Voltage level few V to 300 kV At GSI, all together≈ 900 PCs

Outline

Different Circuit Configurations/Topologies for PC

- Linear Controlled
- Switch Mode SM-1, SM-2 and SM-4
- SCR (Silicon Controlled Rectifier)
- Special Types
- PC with Quench Protection
- Supporting Infrastructure
 - Power Supply System: Power grid
 - PC Control and Protection
 - Cooling: Air and Water
 - Power Cables
 - Building: PC size and General Installation
- Costing and Miscelleneous

High Voltage Supply in MW-Range

Power Converters in kW-Range

Power Range

Controls in W-Range

Power Converters in FAIR

Sub Station	C1	C2 and C3	PP1 and PP2
Leonhardstanne	31.5 MVA		(31.5 MVA)
North (GSI+FAIR)			2*63 MVA SIS18, SIS100, HEBT and HPC
South (FAIR)		63 MVA and 31.5 MVA (All storage rings, cryo- plant and Infrastructure)	

- SIS18 38 MVA (50 MW); SIS100 30 MVA (25 MW); HEBT 17 MVA and HPC 12 MVA Total: 63 MVA
- Installed power is double to keep the voltage drop to app 5%
- Cryo-plant has double redundancy from Substation north and south

- 2. An <u>interlock</u> is activated, in case of over current, under voltage, water flow/temperature, load temperature, PC temperature, quench etc. and <u>protect</u> it by switching it off
- 3. <u>Monitors</u> and <u>display</u> the key parameters like I_L, U_L, U_D , water flow etc.

Hardware of ACU System

19" basic unit

Multi-Function-Unit (MFU):

Interlock & Control-Module (ILCM)

18 bit- ADC-Module (ADC)

Typical ACU Application: for a Standard PC at GSI/FAIR

Load Cable and Connection: Coaxial Cable

C/s of Co-axial cable

Copper bushing fixed over the outer conductors

Copper connectors

Example of a cable connection

Load Cable and Connection: Water Cooled Cable

Cooling Circuit: Air and Water Cooling

Environmental conditions	→ In Power Supply		
Air Cooling:			
Ambient temperature 18°C28°C	Fans are included in case of air cooling.		
Relative humidity max. 80%	Air losses have to be specified.		
Water Cooling: Data of desalinated water circuit: Max. pressure 13 bar Peak pressure 15 bar Inlet temperature 25±2 °C Stop valve Difference pressure 10 bar	Water flow q in l/min is adjusted as per the requirement of PC. q should be independent of fluctuations in pressure difference. Flow meter Outlet temperature limit 55 °C.		
Conductivity < 1 µS/cm	Allowed materials: copper and stainless-steel.		

Building: Considerations from PC Point-of-View

Power Supply Considerations:

- Cabinet size, weight and Height
- Floor space

General Installation Considerations:

- False floor; typical height 0.5m, local peak load 5000 N; distributed load 30 kN/m²
- Optimized current cabling (length, losses and cable tray arrangement)
- Keep air losses low
- Separate rooms with metallic false floor for 20 kV Transformers and inductors

uilding: Considerations from PC Point-of-View

Costing: Power and Control Parts

- Power Part: Transformer, Switches, Input and output filter, Damping circuit etc. placed in a cabinet (Contractor)
- Control Part: ACU and DCCT (GSI in-kind)
- Cables (FAIR/ in-kind ?)
- Cable connectors (FAIR)

SIS18 Dipole Upgrade

Final SAT expected till December 2017

New power-cable laying and connection in June 2015

My Sincere Acknowledgements to:

Mr. Welker, Mr. Ramakers, Mr. Trumm, and to All my colleagues in LOEP

For their Guidance and Contribution

Thanks for Your Attention!