

Updates to the Circle Hough Algorithm

LUDOVICO BIANCHI, FORSCHUNGSZENTRUM JÜLICH

PANDA Collaboration Meeting #54, GSI, Sep 08 2015

Circle Hough Algorithm

General principle

- Based on the Hough transform algorithm for detection of a shape S within a data set D
 - Parametrize target shape S with set of parameters
 - For each point in D, calculate all possible instances of S
 - Collect votes in parameter space P (Hough space)
 - Most voted sets of parameters in $P \Longrightarrow$ instances of S in D
- For trackfinding in PANDA
 - Calculate all possible tracks compatible with one hit
 - Repeat for many hits
 - Most voted track parameters \Longrightarrow real tracks

- Shape to find: primary tracks in 2D
 ⇒ circles in the (x, y) plane, passing through IP at (0, 0) and
 hit at (x_{hit}, y_{hit})
 - Point hit (MVD)
 - Extended hit (STT): tangent to isochrone radius
- Parameters: coordinates of circle centers ⇒ 2D Hough space
 - Use one parameter as sampling parameter
 - Calculate second parameter from hit contact condition

Hough Circles

4/22

Hough Circles

Hough Circles, "External" Series

Hit is external w.r.t. the Hough circle; counterclockwise direction

Hough Circles, "External" Series

Hit is external w.r.t. the Hough circle; clockwise direction

L. Bianchi | PANDA CM 54 | 2015-09-08

glied der Hel mholtz-Gemeinschaft

Hough Circles, "Internal" Series

Hit is internal w.r.t. the Hough circle; counterclockwise direction

L. Bianchi | PANDA CM 54 | 2015-09-08

8/22

Hough Circles, "Internal" Series

Hit is internal w.r.t. the Hough circle; clockwise direction

L. Bianchi | PANDA CM 54 | 2015-09-08

Hough Circles, Both Series

 $^{11}/_{22}$

ÜLICH

p a n d a

 $^{11}/_{22}$

Accumulator Array

- Collect parameters in accumulator array
- Discrete 2D domain
- \Rightarrow Fine tune necessary between radius sampling and array size
- ⇒ Dishomogeneous structure makes peakfinding more difficult

- Each coordinate pair must fill the array exactly once
- ⇒ Current solution:
 - Reject values ending up in the same bin
 - Fill empty values by interpolation

Accumulator Array

- Collect parameters in accumulator array
- Discrete 2D domain
- \Rightarrow Fine tune necessary between radius sampling and array size
- ⇒ Dishomogeneous structure makes peakfinding more difficult

- Each coordinate pair must fill the array exactly once
- ⇒ Current solution:
 - Reject values ending up in the same bin
 - Fill empty values by interpolation

Alternative Approach

Based on two properties of our problem:

- Geometric locus of circle centers is known
 - Hyperbola, whose parameters are easily computed from hit data
- Analogy between Hough space and 2D image
 - Bin in 2D accumulator array \Longrightarrow pixel in bitmap
 - Take advantage of image processing algorithms
 - Especially important for implementation on parallel architectures
- ⇒ Operate directly on locus rather than on individual circles

L. Bianchi | PANDA CM 54 | 2015-09-08

Bezier Curves

- Bezier curves: parametric polynomial curves of degree N, defined by their N + 1 control points P₀...P_N
- Rational Bezier curves of degree 2 represent conic sections exactly ⇒ "lossless" description of hyperbola
 - Convenient parametrization
 - Easy linearization
 - Widely used in computer graphics

$$\mathbf{B}(t) = (1-t)^2 w_0 \mathbf{P}_0 + 2(1-t)t w_1 \mathbf{P}_1 + t^2 w_2 \mathbf{P}_2, \quad 0 \le t \le 1$$

 $^{16}/_{22}$

"Outer" curve

 $^{18}/_{22}$

"Inner" curve

Rasterization

- Draw a figure to a bitmap
- Bresenham algorithm: simple, fast algorithm for rasterization of straight lines
- Adaptable to Bezier curves (directly or via polyline)

- Calculate slope $(y_1 y_0)/(x_1 x_0)$
- At each step calculate deviation from ideal line ε
 - Only two possible choices:
 - $-\varepsilon < 0.5$: increment *x*, *y* unchanged
 - $-\varepsilon >$ 0.5: decrement y instead

Image credit: http://kobi.nat.uni-

magdeburg.de/patrick/pmwiki.php?n=BEng.TheLCDController

L. Bianchi | PANDA CM 54 | 2015-09-08

Accumulator Array

- Uniform filling of accumulator array, independent of bin density
- Sharper, more regular peaks

Click on the images to download PNG image of the entire frame (\sim 1 MB)

Conclusion & Outlook

- Circle Hough algorithm for trackfinding
 - Compute all tracks compatible with one hit
 - Combine results from N hits
 - Find accumulation of track parameters
- Developed alternative approach based on geometric properties of track centers
 - Parametrize locus (hyperbola) using Bezier curves calculated from hit data
 - Rasterize Bezier curves on accumulator array
 - Perform peakfinding on accumulator array
- Work in progress:
 - □ Finalize peakfinding
 - □ Write optimized implementation CPU, GPU
 - Physics studies