

Status Report of Disc DIRC Software

Klim Biguenko, Michael Düren, Erik Etzelmüller, Klaus Föhl, Avetik Hayrapetyan, Benno Kröck, Oliver Merle, Julian Rieke, <u>Mustafa Schmidt</u>

September 08, 2015

Theoretical Model

Angle Definitions:

Theoretical Model

Calculation of the Cherenkov angle:

 $\theta_{c} = \arccos(\sin \theta_{p} \cos \phi_{rel} \cos \varphi + \cos \theta_{p} \sin \varphi)$ (1)

- θ_p : θ angle of particle
- ϕ_{rel} : angular difference between ϕ angle of particle and photon
- φ : Angle between total reflected photon and radiator disk surface

Calculation of φ if θ_c is known:

$$\cos\varphi = \frac{A\cos\theta_c}{B} \pm \sqrt{\frac{\cos^2\theta_p - \cos^2\theta_c}{B} + \left(\frac{A\cos\theta_c}{B}\right)} \quad (2)$$

with $A = \sin \theta_p \cos \phi_{\rm rel}$ and $B = A^2 + \cos^2 \theta_p$

Calibration

Correlation between pixel number and angle φ :

3/13

Disc DIRC Prototype

Tested with geometry of Disc DIRC prototype with 15 FELs

Simulation Results for Prototype

Beam momentum: p = 4 GeV/c, particles: π^+ x = y = 0 mm, $\theta = 10^\circ$, $\phi = 0^\circ$, n = 1000 events

5/13

- Composition of particle beam at 2 GeV:
 - 55 % pions
 - 40 % protons
 - 5% kaons
- Beam diameter: approx. 2 cm (nearly gaussian distributed with flat plateau)
- Different positions and angles possible

Input parameters:

- Particle position on radiator disk: (x_0, y_0)
- Angles of particle trajectory (θ , ϕ)

Reconstruction steps:

- Only accepting photons inside specific shutterwindow
 t₁ < t < t₂
- (Wavelength cut for bandpass filter optional)
- **③** Calculation of α_{FEL} , ϕ_{rel} and t from the particle position (x_0, y_0)
- Calculation of φ' from the pixel position z_p
- **(a)** Calculation of φ with $\alpha_{\textit{FEL}}$
- **(**) Calculation of the cherenkov angle θ_c
- Only accepting events with hits in at least 5 FELs

Reconstruction of Cherenkov Angles

Beam momentum: $p = 2 \,\text{GeV/c}$

Cherenkov Angle Distribution

Mustafa Schmidt

Seperation Power

Calculation of seperation power for p = 3 GeV/c:

$$n_{\sigma} = \frac{\bar{\theta}_{c,\pi} - \bar{\theta}_{c,k}}{\frac{1}{2}(\sigma_{\bar{\theta}_{c,\pi}} + \sigma_{\bar{\theta}_{c,k}})} = 2.9$$

Probability for misidentification:

Particle Identification

Beam momentum: p = 3 GeV/c

Mustafa Schmidt

Pseudo Likelihood Function:

- Creating hypothesis for particle mass m_h for π , p and K
- Predicting average photon wavelength
- Calculation of predicted hit pattern for given hypothesis
- Computing reference time for getting rid of outliners
- Matching the hit patterns
- Quantifiying pattern matching with combined likelihood function

Hit Pattern Prediction

Particle: π^+ , beam momentum: p = 4 GeV

Mustafa Schmidt

- Reconstruction and PID working with "old" PandaRoot version
- Algorithms tested with planed prototype
- Next step: inserting code into trunk version and uploading into PandaRoot repository