PANDA Cluster-Jet Target, Glass Nozzles, and Dynamic Thickness Control

Silke Grieser

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik $\overline{P}ANDA$ Meeting Darmstadt, September 8th 2015

Status of the PANDA Cluster-Jet Target

- Status of electrical installation: Talk of B. Hetz
- Scattering chamber and beam pipe finished
 - \rightarrow Ready for installation at the ceiling
- Integration of final pumping station with the target within the next few weeks
 - \rightarrow Cluster beam production

Future of the PANDA Cluster-Jet Target

- PANDA cluster-jet target moves to COSY (Jülich)
- Measuring station: WASA
- Assembly in 2. shutdown phase (spring 2016)

Future of the PANDA Cluster-Jet Target

- PANDA cluster-jet target moves to COSY (Jülich)
- Measuring station: WASA
- Assembly in 2. shutdown phase (spring 2016)

Glass Nozzle Selective laser etching of glass

 $\bullet\,$ Microscopic view of the narrowest inner diameter of about 30 μm

- Vespel[®] is an excellent alternative for indium for sealing (even for the CERN nozzles)
- $\bullet\,$ Cooling test with 18 bar helium down to $19.5\,\mathrm{K}$ successful

5 cm

Beam Origin within the Nozzle

- Beam origin was investigated by E. Köhler (Phd thesis)
- X position-offset yields beam origin

Beam Origin within the Nozzle

- A mean value of $x_{
 m off} = (1543 \pm 58)$ px
- Distance from the image origin to the skimmer equals $x_{
 m skimmer} = (1177 \pm 1) \;
 m px$
- Beam origin yields $x_0 = (2720 \pm 58)$ px and corresponds to a length of (47 \pm 2) mm
- This complies to a distance of around (6 \pm 2) mm from the narrowest point of the nozzle

Beam Origin within the Nozzle

Glass Nozzle Extension for Glass Nozzle

• Extension for glass nozzle for a longer outlet zone \rightarrow Next week

Dynamic Thickness Control Variation of Thickness

Dynamic Thickness Control

- Preliminary work at the cluster-jet target MCT1S
- Temperature is the regulating parameter
- Overshot irrelevant \rightarrow beam preparation & no cluster beam in interaction chamber

Dynamic Thickness Control

• Measurement over 67 h ightarrow 90 ramps in a row

Dynamic Thickness Control

• Effects of a PID control system

Summary

- Construction of PANDA cluster-jet target is forging ahead
- Initial measurements with new glass nozzles at the PANDA cluster-jet target prototype
- Beam origin within the nozzle was investigated
- Possibility of dynamic thickness control was successfully shown

Outlook

- PANDA cluster-jet target moves to COSY (spring 2016)
- Extension for glass nozzle and further measurements