Status of the secondary target for the hypernuclear experiment

Sebastian Bleser

Helmholtz-Institut Mainz
Johannes Gutenberg-Universität

PANDA-Meeting September $8^{\text {th }}, 2015$

Primary reaction

15.84 million reactions $\overline{\bar{p}}$ on ${ }^{12} \mathrm{C}$ in GiBUU simulation to produce $\bar{\Xi}^{-}$

Primary reaction

15.84 million reactions $\overline{\bar{p}}$ on ${ }^{12} \mathrm{C}$ in GiBUU simulation to produce $\bar{\Xi}^{-}$

Simulation of $\bar{\Xi}^{-}$in geometry

Geant4 simulation with \equiv^{-}from GiBUU / generator with parametrized events

Desired case: $\bar{\Xi}^{-}$stopped in absorber

Famate

Simulation of $\bar{\Xi}^{-}$in geometry

Geant4 simulation with \equiv^{-}from GiBUU / generator with parametrized events

Bad case: $\bar{\Xi}^{-}$decay

$$
\begin{array}{lll}
\bar{\Xi}^{-} \rightarrow \Lambda+\pi^{-} & 139 \mathrm{MeV} / \mathrm{c} \\
\Lambda \rightarrow \mathrm{p}+{\pi^{-}}_{2} & 101 \mathrm{MeV} / \mathrm{c} & (64 \%)
\end{array}
$$

Simulation of Ξ^{-}in geometry

Detection of ${ }^{11} \mathrm{Be}$

Concept: Pion tracking

Simulation steps:

- phase space decay by Geant4

$$
\begin{aligned}
&{ }_{\wedge \Lambda}^{11} \mathrm{Be} \rightarrow{ }_{\Lambda}^{11} \mathrm{~B}+{\Pi^{-}}_{1} \\
&{ }_{\Lambda}^{11} \mathrm{~B} \rightarrow{ }^{11} \mathrm{C}+\pi_{2}^{-}
\end{aligned}
$$

- smearing of the pion points in sensors with spatial resolution
- track finding and track fitting for $\pi^{-}{ }_{1}$ and $\pi^{-}{ }_{2}$
- momentum reconstruction

expected momentum distribution:

Simulation result at π^{-}vertex

HELMHOLTZ
| GEMEINSCHAFT

Simulation result at first π point

HELMHOLTZ
| GEMEINSCHAFT

Simulation result of π points

푶표

HELMHOLTZ
| GEMEINSCHAFT

Simulation of $\bar{\Xi}^{-}$in geometry

Geant4 simulation with \equiv^{-}from GiBUU / generator with parametrized events

Pion tracking result

Reconstructed
momenta for all
pions:
result
$p_{1}=129.39 \mathrm{MeV} / \mathrm{c}$
$p_{2}=71.26 \mathrm{MeV} / \mathrm{c}$
res $_{1}=6.7 \%$
res $_{2}=10.7 \%$
efficiency $=58.6 \%$
reconstructed momenta

Pion tracking result

Pion background from $\overline{\text { - decays }}$

Analysis of the Ξ^{-}simulation result
$\bar{E}^{-} \rightarrow \Lambda+\pi_{1}^{-}$ $139 \mathrm{MeV} / \mathrm{c}$
$\Lambda \rightarrow \mathrm{p}+\mathrm{T}^{-}{ }_{2}$ (64\%) $101 \mathrm{MeV} / \mathrm{c}$

Pion background from $\overline{\text { - decays }}$

Analysis of the
Ξ^{-}simulation result
$\bar{E}^{-} \rightarrow \Lambda+\pi_{1}^{-}$ $139 \mathrm{MeV} / \mathrm{c}$
$\Lambda \rightarrow \mathrm{p}+\mathrm{T}^{-}{ }_{2}$ (64\%) $101 \mathrm{MeV} / \mathrm{c}$

Momentum distribution of incident $\quad \Xi^{`}$ at 1st layer

Pion background from $\overline{\text { - decays }}$

Reconstructed momenta for all pions
reconstructed momenta of π^{\prime} from Ξ^{\prime}-Decays and ${ }_{A \Lambda}^{11} \mathrm{Be}$-Decays

\square | GEMEINSCHAFT

Pion background from $\overline{\text { - decays }}$

Reconstructed momenta for correlated pions

Pion tracking in comparison

Reconstructed momenta for correlated pions in x projection

reconstructed momenta of correlated $\quad \pi^{-}$from Ξ^{-}-Decays and ${ }_{A M}^{11} \mathrm{Be}$-Decays

Pion tracking in comparison

Reconstructed momenta for correlated pions in y projection

reconstructed momenta of correlated
 ${ }^{11}$ Be-Decays

Primary reaction

15.84 million reactions $\overline{\mathrm{p}}$ on ${ }^{12} \mathrm{C}$ in GiBUU simulation to produce $\bar{\Xi}^{-}$

Pion background from GiBUU

Background reduction

Analysis of the
GiBUU
simulation result

- No vertex

 difference for:$$
\begin{gathered}
{ }_{\wedge \Lambda}^{11} \mathrm{Be} \rightarrow{ }_{\wedge}^{11} \mathrm{~B}+\Pi^{-}{ }_{1} \\
{ }_{\Lambda}^{11} \mathrm{~B} \rightarrow{ }^{11} \mathrm{C}+\Pi^{-}{ }_{2}
\end{gathered}
$$

- Primary π^{-}from primary vertex (0, 0, -55)

Outlook

- ongoing GiBUU simulations to get more statistics
- tracking of the background π^{-}from primary reactions
- vertex reconstruction for π^{-}
- taking pions from \equiv^{-}decays at rest into account (capture and conversion probability $\approx 5 \%$)
- looking for signatures and properties of the background π^{-}to cut on (as displaced vertices, transverse momentum and other observables)
- analyzing the possibility to tag the non mesonic weak decay of ${ }^{11}{ }_{\wedge} \mathrm{Be}$

