On bound states of hadrons in nuclei

J. Mareš Nuclear Physics Institute, Řež

+ D. Gazda, A. Cieplý, N.V. Shevchenko (Řež) E. Friedman, A. Gal (Jerusalem)

Physics Symposium @ 26th CBM Week, Prague, September 16, 2015

Prelude

There are good reasons to study interactions of hadrons (not only N) with the nuclear medium:

- free-space and in-medium *HN* interactions $(H = Y, K, \eta) \rightarrow$ test of interaction models (meson exchange, chiral)
- test of nuclear models hyperon X nucleon \rightarrow no Pauli blocking \rightarrow hyperon can penetrate deep into the nuclear interior, probe it and test nuclear response
- hypernuclear production test of reaction mechanisms
- hypernuclear decays study of weak interaction
- nature of resonances $\Lambda(1405)$, $\Sigma(1385)$, $N^*(1535)$
- possible existence of $K^-(\eta)$ nuclear states
- in-medium modifications, strangeness production in HI collisions
- structure of compact stars

Hypernuclei

> 30 Λ-hypernuclei:

World of matter made of u, d and s quarks

• (K^-, π^-) reaction (emulsions, CERN, BNL, KEK, Frascati, JParc) • (π^+, K^+) reaction (BNL, KEK)

Hotchi et al, PRC 64 (2001) 044302

- Textbook example of single-particle structure
- A hyperon bound by $\sim 28~\text{MeV}$ in nuclear matter
- Negligible spin-orbit splitting

 RMF calculation of hypernuclei - small SO splitting explained J.M., B.K. Jennings, PRC (1994)

(K⁻_{stop}, π⁻) reaction
 (FINUDA, PLB 622 (2005) 35):

A binding energy spectrum in $^{12}_{\Lambda}C$

• (e, e'K) reaction (JLab, PRL 99 (2007) 052501):

• γ spectroscopy (BNL, KEK)

 \Rightarrow spin dependence of the effective ΛN interaction in the nuclear p shell

$$\begin{split} V_{\Lambda N} &= V_0(r) + V_\sigma(r) \; s_N \cdot s_\Lambda + V_{LS}(r) \; l_{N\Lambda} \cdot (s_\Lambda + s_N) + V_{ALS}(r) \; l_{N\Lambda} \cdot (s_\Lambda - s_N) + V_T(r) \; S_{12} \\ \text{D.J. Millener, Nucl. Phys. A 804 (2008) 84} \end{split}$$

s-shell Λ hypernuclei

Nemura et al, PRL 89 (2002) 142504 (+ $\Lambda N \rightarrow \Sigma N$ and $\Lambda \Lambda \rightarrow \Xi N$) - variational approach Hiyama et al, PRC 65 (2002) 011301(R) - Jacobi-coordinate Gaussian basis Nogga et al, PRL 88 (2002) 172501 - Faddeev + Faddeev-Yakubovsky

• s-shell + p-shell Λ hypernuclei

```
Isaka et al, PRC (2014,2015) - AMD
Schaefer et al, EPJ Web Conf.(2015)- FMD
Gazda et al, FBS (2014), PRL (2014) - NCSM
```

- ${}^{9}\text{Be}(K^{-}, \pi^{-})_{\Sigma^{-}}^{9}\text{Be}$ (Bertini (80), CERN) + further narrow Σ -nuclear resonance states in the continuum (KEK, BNL): ${}^{4}_{\Sigma}\text{He}, {}^{6}_{\Sigma}\text{Li}, {}^{12}_{\Sigma}\text{C}, {}^{16}_{\Sigma}\text{O}$ (limited statistics \Rightarrow contradictory results)
- Narrow states X widths about 10 20 MeV due to $\Sigma N \rightarrow \Lambda N$
- 80's many attempts to produce Σ-hypernuclear states and to explain narrow widths

Σ hypernuclei

• Exotic atom $(h = \pi^-, \bar{p}, K^-, \Sigma^-, \Xi^-)$

$$\longrightarrow \varepsilon, \ \Gamma \longrightarrow V_{\text{opt}}$$

	${\sf Re}V_{ m opt}$
π^{-}	repulsive
K^-	attractive
Þ	attractive
Σ-	repulsive

ImV_{opt} (absorptive) moderate strong strong moderate

Σ hypernuclei

Σ-nucleus interaction:

(J.M., Friedman, Gal, Jennings, NPA 594 (1995) 311)

• Σ hyperons are not bound in nuclei except for $\frac{4}{\Sigma}$ He

Sawafta et al, PRL 83 (1999) 25; Noumi et al, PRL 89 (2002) 072301

• DWIA calculations for (π^-, K^+) spectra (Harada & Hirabayashi, NPA 759 (2005) 143)

- Ξ-nucleus interaction:
- $^{12}C(K^-, K^+)$ spectra (KEK -E224, BNL-E885) \rightarrow $V_{\Xi} \approx 14 \text{ MeV}$
- Calculations of light Ξ hypernuclei (Motoba et al)
- Spectroscopic study of Ξ hypernucleus ¹²_ΞB ... (T. Nagae), A 'Day-1' experiment E05 at J-Parc

One can envisage bound many-body systems containing more baryons from the SU(3) octet: N, A, $\Sigma,$ Ξ

- Multiply strange nuclear systems
 - of interest for astrophysics (neutron stars)
 - of interest for HI collisions
 - their study = source of information about B B interactions
- Unfortunately, only few $\Lambda\Lambda$ hypernuclei known: ${}^{4}_{\Lambda\Lambda}H$ (?), ${}^{6}_{\Lambda\Lambda}He$, ${}^{10}_{\Lambda\Lambda}Be$, ${}^{13}_{\Lambda\Lambda}B$

 $\Delta B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda} \mathrm{He}) = B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda} \mathrm{He}) - 2B_{\Lambda}(^{5}_{\Lambda} \mathrm{He}) \approx 1 \text{ MeV}$ Takahashi et al, PRL 87 (2001) 212502

Multi-strange baryonic systems

- RMF model predicts a possibility of forming bound systems with appreciable number of hyperons
- Delicate interplay between the effect of Pauli blocking (Y, N distinguishable) and weaker YN interactions →

{N, A, and Ξ } configurations: $\rho \approx (2-3)\rho_0$, $f_s = |S|/A \approx 1$, $|Z|/A \ll 1$

 $\equiv N \rightarrow \Lambda\Lambda \ (\approx 25 \text{ MeV} \text{ in free space})$ is Pauli blocked

Neutron star

neutron star structure

Glendenning, Schaffner-Bielich PRC 60 (1999) 025803

- hyperons (or even kaons) could occur at $ho\gtrsim 3
 ho_0 o M_{NS} \le 1.5 M_{\odot}$
- but P.B. Demorest et al, Nature 467 (2010) 1081 M(J1614-2230) = $1.97 \pm 0.04 \text{ M}_{\odot}$ J. Antoniadis et al, Science 340 (2013) 1233232 - M(J0348-0432) = $2.01 \pm 0.04 \text{ M}_{\odot}$
- (?) need for repulsive 3body YNN and YYN forces to make EOS stiff
 - \rightarrow hyperons appear in NS at much larger densities (if at all)

3-body $\land NN$ forces

phenomenological Usmani V_{AN} and V_{ANN} forces
 Lonardoni, Pederiva, Gandolfi, PRC (2013, 2014)

$\bar{K}N$ interaction

• $\bar{K}N$ interaction

strongly attractive + strongly coupled to $\pi\Sigma$

$$\Leftarrow \exists \Lambda(1405)$$
, $I = 0 \pi \Sigma$ resonance, 27 MeV below K^-p threshold

(PDG: $M = 1405 \pm 5$ MeV, $\Gamma = 40 \pm 10$ MeV)

	I=0	l=1
NN	deuteron (2 MeV)	attractive
ΚN	A(1405) (15-30 MeV)	attractive

$ar{K}$ -nucleus interaction

• \bar{K} -nucleus interaction

strongly attractive and absorptive \Leftarrow kaonic atom level shifts and widths ? optical potential depth: $\operatorname{Re} V_{opt} \simeq (150-200) \text{ MeV} \leftarrow$ phenomenological models $\operatorname{Re} V_{opt} \simeq (50-60) \text{ MeV} \leftarrow$ chiral models $\operatorname{Im} V_{opt} \simeq (60-70) \text{ MeV}$ (E. Friedman, A. Gal, NPA 881 2012 (150), NPA 899 (2013) 60: self-consistent subthreshold K^-N amplitudes + K^- -multinucleon interactions are needed!)

• \Rightarrow Do \bar{K} -nuclear states exist?

Are they sufficiently narrow to be identified in experiment

\bar{K} nuclear states ?

T. Yamazaki, Y. Akaishi / Physics Letters B 535 (2002) 70-76

• $(2N)\overline{K}$, $(3N)\overline{K}$, $(4N)\overline{K}$, $(8N)\overline{K}$, ... (Akaishi, Yamazaki, Doté *et al.*) large polarization effects $\rho \simeq (4-8)\rho_0$ $B \gtrsim 100$ MeV, $\Gamma \simeq (20-35)$ MeV

$ar{K}$ nuclear states - Status Quo

- ? K^- capture in Li and ¹²C (FINUDA) \rightarrow K^-pp : $B = 115 \pm 6 \pm 4$ MeV, $\Gamma = 67 \pm 14 \pm 3$ MeV (M. Angello *et al.*, PRL 94 (2005) 212303)
- ? \bar{p} annihilation on ⁴He (Obelix, LEAR) $\rightarrow K^{-}pp$: $B \simeq 160$ MeV, $\Gamma \simeq 24$ MeV (G. Bendiscioli *et al.*, NPA 789 (2007) 222)
- ? pp → K⁺Λp (DISTO) → K⁻pp : B ≃ 105 MeV, Γ ≃ 118 MeV (T. Yamazaki *et al*, PRL 104 (2010) 132502)
- current status @ HYP2015 $pp \rightarrow (K^-pp) + K^+ \text{ (GSI)}$ - no candidates $\pi + d \rightarrow (K^-pp) + K^+ \text{ (E27, JPARC)} - K^-pp:$ $B = 95 \stackrel{_{+18}}{_{-17}} \text{ (stat.)} \stackrel{_{+30}}{_{-21}} \text{ (syst.)} \text{ MeV}, \Gamma = 162 \stackrel{_{+87}}{_{-45}} \text{ (stat.)} \stackrel{_{+66}}{_{-78}} \text{ (syst.)} \text{ MeV}$

$\bar{K}N$ interactions

- chiral SU(3)_L ×SU(3)_R meson-baryon effective Lagrangian for $\{\pi, K, \eta\} + \{N, \Lambda, \Sigma, \Xi\}$
- \exists resonances (e.g. $\Lambda(1405)$) $\Rightarrow \chi$ PT not applicable \rightarrow
- nonperturbative coupled-channel resummation techniques

 $T_{ij} = V_{ij} + V_{ik}G_{kl}T_{lj}, V_{ij}$ derived from \mathcal{L}_{χ}

Effective potentials match the chiral meson-baryon amplitudes up to NLO order

- S = -1 sector ($\bar{K}N$ related channels involved): $\pi\Lambda, \pi\Sigma, \bar{K}N, \eta\Lambda, \eta\Sigma, K\Xi$
- Model parameters (NLO d-couplings, inverse interaction ranges) fixed in fits to low-energy meson-nucleon data:
 - kaonic hydrogen data (SIDDHARTA)
 - K⁻p threshold branching ratios
 - K^-p low energy X-sections

 K^-p scattering:

Threshold branching ratios:

$$\gamma = \frac{\Gamma(K^- \rho \to \pi^+ \Sigma^-)}{\Gamma(K^- \rho \to \pi^- \Sigma^+)} = 2.36 \pm 0.04$$
$$R_{\rm c} = \frac{\Gamma(K^- \rho \to {\rm charged})}{\Gamma(K^- \rho \to {\rm all})} = 0.664 \pm 0.011$$
$$R_{\rm n} = \frac{\Gamma(K^- \rho \to {\rm neutral})}{\Gamma(K^- \rho \to {\rm neutral})} = 0.189 \pm 0.015$$

Chiral K^-N scattering amplitudes

• Strong energy dependence of $f_{K^-p}(\sqrt{s}) = 1/2(f_{KN}^{I=0} + f_{KN}^{I=1})$ affected by the $I = 0 \Lambda(1405)$

dotted - in vacuum, dot-dashed - Pauli blocked, continuous - Pauli blocked + hadron selfenergies

 In-medium K⁻p interaction is relatively weak at threshold but becomes stronger when going subthreshold

$\bar{K}N$ interaction

• $\Lambda(1405)$ – dynamically generated 2body resonance coupled channel chiral approach \rightarrow strongly correlated $\bar{K}N - \pi\Sigma$ dynamics provides 2 resonance poles

 $\Lambda(1405)$ is NOT a simple bound state but emerges from the complex interplay of the strongly coupled $\bar{K}N$ and $\pi\Sigma$ channels

 Pole positions from chiral SU(3) coupled-channels calculation with SIDDHARTA threshold constraints:

 $\begin{array}{lll} E_1 = 1424 \pm 15 \ {\rm MeV} & \quad E_2 = 1381 \pm 15 \ {\rm MeV} \\ \Gamma_1 = 52 \pm 10 \ {\rm MeV} & \quad \Gamma_2 = 162 \pm 15 \ {\rm MeV} \end{array}$

Y. Ikeda, T. Hyodo, W.W.: Nucl. Phys. A 881 (2012) 98

K⁻pp quasibound state

 K^-pp binding energies and widths (in MeV) – chiral, E-dependent approach

	var.[1]	var.[2]	Fad.[3]	Fad.[4]
В	16	17-23	9-16	32
Г	41	40-70	34-46	49

- 1. N. Barnea, A. Gal, E.Z. Liverts, PLB 712 (2012) 132
- 2. A. Dote, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
- 3. Y. Ikeda, H. Kamano, T. Sato, PTP 124 (2010) 533
- 4 J. Revai, N.V. Shevchenko, PRC 90 (2014) 034004

 K^-pp binding energies and widths (in MeV) – phenomenological, E-independent approach

	var.[5]	Fad.[6]	Fad.[7]	var.[8]	Fad.[9]
В	48	50-70	60-95	40 -80	47
Г	61	90-110	45 - 80	40 - 85	50

- 5. T. Yamazaki, Y. Akaishi, PLB 535 (2002) 70
- 6. N.V. Shevchenko, A. Gal, J. Mares, PRL 98 (2007) 083201
- 7. Y. Ikeda, T. Sato, PRC 76 (2007) 035203, PRC 79 (2009) 035201
- 8. S. Wycech, A.M. Green, PRC 79 (2009) 014001
- 9. J. Revai, N.V. Shevchenko, PRC 90 (2014) 034004

Binding energies:

phenomenological models: $K^- p \rightarrow 27$ MeV, $K^- pp \rightarrow 50 - 100$ MeV chiral (E-dependent) models: $K^- p \rightarrow 10 - 13$ MeV, $K^- pp \rightarrow 10 - 30$ MeV

$ar{K}$ in few-body systems

- - N. Barnea, A. Gal, E.Z. Liverts, PLB 712 (2012)

QBS	I, J^{π}	$\langle \delta \sqrt{s} \rangle$	В	Г
		[MeV]	[MeV]	[MeV]
<i>ĒNNN</i>	$0, \frac{1}{2}^+$	-61	29.3	32.9
	$1, \frac{1}{2}^+$	-36	18.5	31.0
$\bar{K}\bar{K}NN$	$0, 0^{+}$	-46	32.1	80.5
$V_{\bar{K}\bar{K}}=0$		-52	36.1	83.2

- T. Yamazaki, Y. Akaishi, PRC 65 (2002) 044005, PLB 587 (2004) 167: B(K̄NNN) ~ 100 MeV, B(K̄K̄NN) ~ 120 MeV !
- Y. Kanada-En'yo, D. Jido, PRC 78 (2008) 025212:
 B(KKN) = 10 32 MeV, Γ(KKN)=40 60 MeV
- N.V. Shevchenko, J. Haidenbauer, arXiv:1507.08839v1[nucl-th]: B(KKN) = 12 - 26 MeV, Γ(KKN)=61 - 102 MeV

\bar{K} in few-body systems

• $\bar{K}N \rightarrow \bar{K}\bar{K}NN$ systems

N. Barnea, A. Gal, E.Z. Liverts, PLB 712 (2012)

Binding energies and $\bar{K}N \rightarrow \pi Y$ widths of \bar{K} and $\bar{K}\bar{K}$ few-body quasi-bound states.

• K.-G. equation

$$\left[\omega_{K}^{2}+\vec{\nabla}^{2}-m_{K}^{2}-\Pi_{K}(\vec{p}_{K},\omega_{K},\rho)\right]\phi_{K}=0$$

complex energy $\omega_K = m_K - B_K - i\Gamma_K/2 - V_C$

- self-energy operator Π_K(p
 _K, ω_K, ρ) constructed microscopically from a chiral model
- \bar{K} in a nucleus \Rightarrow polarized (compressed) $\rho \longrightarrow \Pi_{K}(\rho)$ \Rightarrow self-consistent solution

$ar{K}$ in many-body systems

Selfenergy operator

$$\Pi_{\mathcal{K}} = 2\,\omega_{\mathcal{K}}V_{\mathcal{K}} = -4\pi\frac{\sqrt{s}}{m_{\mathcal{N}}}F_{\mathcal{K}\mathcal{N}}(\vec{p},\sqrt{s},\rho)\,\rho$$

- $F_{KN} = \bar{K}N$ scattering amplitude with **two-body arguments:** $\vec{p} = \bar{K}N$ relative momentum, $\sqrt{s} (s = (E_K + E_N)^2 - (\vec{p}_K + \vec{p}_N)^2)$
- $\bar{K}N$ c.m. frame $\rightarrow \bar{K}$ -nucleus c.m. frame $\Rightarrow \vec{p}_{K} + \vec{p}_{N} \neq 0$ $\Rightarrow \sqrt{s} \sim E_{th} - B_{N} \frac{\rho}{\bar{\rho}} - \xi_{N} B_{K} \frac{\rho}{\rho_{0}} - \xi_{N} T_{N} (\frac{\rho}{\rho_{0}})^{2/3} + \xi_{K} \operatorname{Re} V_{K}(\rho)$
- ρ = nucl. medium density (RMF calculations)
- $V_K, B_K \Rightarrow$ self-consistent solution

$\bar{K}N$ scattering amplitude

• Chiral coupled-channels model:

A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115 ← NLO model (SIDDHARTA data)

multi-channel L.-Sch. equation:

$$T_{ij} = V_{ij} + V_{ik} G_{kl} T_{lj}$$

$$V_{ij}$$
 in separable form, $G = \frac{1}{E - H_0 - \Pi(\sqrt{s}, \rho)}$

'+SE' option: hadron self-energies Π in G_{ij} \Rightarrow self-consistency in V_{K}

K^- potentials

$$\sqrt{s} = E_{th} \& F_{KN} = F_{KN}(\Pi_K)$$

amplitude with selfenergies at threshold

Binding energies and widths of $1s K^-$ states (TM1 model)

	¹² C	¹⁶ O	⁴⁰ Ca	⁹⁰ Zr	²⁰⁸ Pb
B _K	(-0.9)	6.4	25.0	39.0	53.4
Γ _K	(137.6)	120.2	141.8	141.0	129.1

K^- potentials

$B_{\mathcal{K}} \Leftrightarrow V_{\mathcal{K}}(\sqrt{s}) \& F_{\mathcal{K}N} = F_{\mathcal{K}N}(\Pi_{\mathcal{K}})$

amplitude with selfenergies and selfconsistence in K.–G. Eq.

Binding energies and widths of $1s K^-$ states (TM1 model)

	¹² C	¹⁶ O	⁴⁰ Ca	⁹⁰ Zr	²⁰⁸ Pb
B _K	42.4	44.9	58.8	68.9	76.3
Γ _K	16.5	16.2	12.0	11.5	11.3

Excited K^- nuclear states

Binding energies (left panel) and widths (right panel) of K^- -nuclear states, calculated selfconsistently using '+SE' NLO30 amplitudes; $K^-NN \rightarrow YN$ not included.

K^- nuclear states

- 2N absorption $\overline{K}NN \rightarrow YN$ (20%) nonmesonic modes
- ophenomenological term added:

 $+ \operatorname{Im} \Pi_{K} = 0.2 f_{2Y} W_{0} \rho_{N}^{2}(r)$ $f_{2Y} \text{ kinematical suppression factors}$ (reduced phase space) $W_{0} \text{ constrained by kaonic atom data}$

The effect of 2N absorption (CS30 model):

		С	0	Ca	Zr	Pb
\sqrt{s} +SE+dyn.	B _K	55.7	56.0	70.2	80.5	87.0
	Γ _K	12.3	12.1	10.8	10.9	10.8
\sqrt{s} +SE+dyn.+2N	Β _K	54.0	55.1	67.6	79.6	86.3
	Γ _K	44.9	53.3	65.3	48.7	47.3

η nuclear states - Status Quo

- Haider, Liu (PLB 172 (1986) 257, PRC 34 (1986) 1845) moderate attractive ηN interaction with scattering length $a_{\eta N} \sim 0.27 + i0.22$ fm $\Rightarrow \exists$ of η nuclear bound states (starting ¹²C)
- Numerous studies since then yielding Rea_{ηN} from 0.2 fm to 1 fm chiral coupled channel models Rea_{ηN} < 0.3 fm; K matrix methods fitting πN and γN reaction data in the N*(1535) resonance region - Rea_{ηN} ~ 1 fm → bound states already in He isotopes
- Strong final-state interaction have been noted in p- and d-initiated η production (COSY-ANKE, COSY-GEM, LNS-SPES2,3,4)
- ${}^{25}_{\eta}Mg$? (COSY-GEM, PRC 79 (2009) 012201(R)) $p + {}^{27}Al \rightarrow {}^{25}_{\eta}Mg + {}^{3}He; \qquad {}^{25}_{\eta}Mg \rightarrow (\pi^- + p) + X$ $B_{\eta} = 13.1 \pm 1.6$ MeV and $\Gamma_{\eta} = 10.2 \pm 3.0$ MeV.
- But NO decisive experimental evidence so far. (negative results for ³_ηHe (photoproduction on ³He - MAMI, PLB 709 (2012) 21.) and for ⁴_ηHe (dd →³ Hepπ - WASA@COSY PRC 87 (2013)035204.)

- Channels involved in the chiral SU(3) coupled-channel approach: πN , ηN , $K\Lambda$, $K\Sigma$ (S = 0)
- Model parameters (NLO d-couplings, inverse interaction ranges) fixed in fits to low-energy meson-nucleon data:
 - S = 0 sector (ηN related channels)
 - πN amlitudes from SAID database (S_{11} and S_{31} partial waves)
 - $\pi N \rightarrow \eta N$ production X-sections

$\eta - N (\pi N) Data$

 $\pi N \rightarrow \eta N$ production X-section:

πN amplitudes from SAID database:

 $(S_{11} \text{ and } S_{31} \text{ partial waves})$

$\overline{K}N$ vs. ηN amplitudes

• Strong energy dependence of the scattering amplitudes !

	$E_{ m th}$ (MeV)	resonance
ĒΝ	1434	Λ(1405)
ηN	1486	N*(1535)

 $\bar{K}N$ case - $\Lambda(1405)$ resonance below threshold

vs.

 ηN case - $N^*(1535)$ resonance above threshold

• Energy dependence of $f_{\eta N}(\sqrt{s}) \leftarrow N^*(1535)$

dotted curve: free-space, dot-dashed: Pauli blocked, full: Pauli blocked + hadron selfenergies

 Nuclear medium reduces the ηN attraction at threshold, the amplitude becomes smaller when going subthreshold

η nuclear states

• ηN amplitude for various models:

line	$a_{\eta N}$ [fm]	model
dotted	0.46+i0.24	N. Kaiser, P.B. Siegel, W. Weise, PLB 362 (1995) 23
short-dashed	0.26+i0.25	T. Inoue, E. Oset, NPA 710 (2002) 354 (GR)
dot-dashed	0.96+i0.26	A.M. Green, S. Wycech, PRC 71 (2005) 014001 (GW)
long-dashed	0.38+i0.20	M. Mai, P.C. Bruns, UG. Meißner, PRD 86 (2012) 094033 (M2)
full	0.67+i0.20	A. Cieply, J. Smejkal, Nucl. Phys. A 919 (2013) 334 (CS)

η nuclear states

 Sensitivity to the energy shift: selfconsistent δ√s reduces both 1s B_η and Γ_η

• GR widths too large to resolve η bound states !

• Model dependence:

• Larger Re $a_{\eta N}$ gives larger B_{η} vs. no relation between Im $a_{\eta N}$ and Γ_{η}

η nuclear states

• Predictions of GW (left) and CS (right) models:

all states in selected nuclei are shown; both models give small widths

Hyperons in nuclear systems

- Λ hyperon bound by 28 MeV in nuclear matter, spin-orbit splitting → 0 Few-body Λ (and ΛΛ) hypernuclei - ΣN → ΛN important
 ? - 3-body YNN forces, charge symmetry breaking in mirror hypernuclei p-shell hypernuclei - effective ΛN interaction determined (exp. JLab, FINUDA, planned JParc, HypHI @ GSI (FAIR))
- more data on $\Lambda\Lambda$ hypernuclei needed \rightarrow PANDA(FAIR)
- Σ hyperons are not bound in nuclei except for $\frac{4}{\Sigma}$ He
- <u>∃</u> hyperons perhaps bound by ≈ 14 MeV in nuclear matter (planned exp. JParc)

\bar{K} in few-body systems

- Theory: $\overline{K}N \pi\Sigma$ interaction still ambiguous (nature of $\Lambda(1405)$, subthreshold extrapolation) \Rightarrow different predictions for few-body systems (K^-pp)
- Experiment: K^-pp 'candidates' with different B_K and Γ_K , contradicting theoretical calculations \rightarrow still under discussion
- $\pi\Sigma$ spectra ($\Lambda(1405)$) new data from LEPS, CLAS, HADES, AMADEUS ...
- K^-pp bound states recent and forthcoming experiments: $pp \rightarrow (K^-pp) + K^+$ (GSI), K^{-3} He $\rightarrow (K^-pp) + n$ (E15, JPARC), $\pi + d \rightarrow (K^-pp) + K^+$ (E27, JPARC) AMADEUS @ Frascati
- K^-d interaction: ε and Γ in kaonic deuterium (SIDDHARTA 2)

\bar{K} in many-body systems

- Chiral models give relatively deeply bound 1s K^- nuclear states $B_{K^-} \sim 50 90$ MeV (A + model dependence).
- After including K̄NN → YN absorption, the decay widths Γ_K are comparable or even larger than the corresponding binding energies B_K for all K⁻ nuclear quasi-bound states, exceeding considerably the level spacing.

η nuclear bound states

- Large energy shift and rapid decrease of the ηN amplitudes lead to relatively small binding energies and widths of the calculated η nuclear bound states.
- additional width contribution not considered in this work due to $\eta N \rightarrow \pi \pi N$ and $\eta NN \rightarrow NN \Rightarrow$ estimated to add few MeV
- Subthreshold behavior of $f_{\eta N}$ is crucial to decide whether η nuclear states exist, in which nuclei, and if their widths are small enough to be resolved in experiment.