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1st order phase transition
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Spinodal fragmentation in liquid/gas nuclear phase transition

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 384 (2004) 263-440
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Size of the fragments

the size decreases with expansion rate H

R =

(
5γ

∆E H2

)1/3

∆E is latent heat, H is Hubble constant, γ is surface tension

I.N.Mishustin, Phys. Rev. Lett. 82 (1999) 4779
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Simulations

J. Randrup, J. Steinheimer: PRL 109 212301, PRC 87 054903,

PRC 89 034901 (with V. Koch)

Equation of State is augmented by the surface term
Enhancement of the baryon density fluctuations

PoS(CPOD 2013)016

Short Title for header Jan Steinheimer

Figure 2: (a): The baryon density distribution in the transverse plane (at z= 0) at time t = 2.5 fm of a single
event with the Maxwell constructed equation of state (b): The baryon density distribution in the transverse
plane (at z= 0) at time t = 2.5 fm of the same event as in (a), this time with the unstable equation of state.

As mentioned above, a proper description of spinodal decomposition requires that finite-range
effects be incorporated [5, 6]. Therefore, following Refs. [8, 16], we write the local pressure as

p(r) = p0(ε(r),ρ(r))−a2εs
ρ(r)
ρs

∇2
ρ(r)
ρs

, (3.2)

where we recall that p0(ε ,ρ) is the equation of state, the pressure in uniform matter characterized
by ε and ρ . With ρs = 0.153/fm3 being the nuclear saturation density and εs ≈mNρs the associated
energy density, the gradient term is normalized such that its strength is conveniently governed by
the length parameter a, which we will set to a= 0.033 [18] for the following results.

Uniform matter inside the spinodal region (where v2s < 0) is mechanically unstable and density
ripples of wave number k will be amplified at a rate γk(ρ,ε). The spinodal growth rates can be
extracted by following the time evolution of small harmonic perturbations of uniform matter. Thus,
imposing periodic boundary conditions, we consider initial systems of the form

ρ(r) = ρ̄+δρ(0)sin(kx) , ε(r) = ε̄+δε(0)sin(kx) , (3.3)

where (ρ̄, ε̄) lies inside the spinodal phase region and the amplitudes δρ(0) and δε(0) are suitably
small. Because the frequency is purely imaginary, ωk = ±iγk, the early time evolution of the
amplitudes will consist of growing and decaying exponentials having equal weights (because the
initial state (3.3) is prepared without any flow) [19],

δρ(t) ≈ δρ(0)cosh(γkt) , δε(t) ≈ δε(0)cosh(γkt) , (3.4)

and it is then straightforward to extract the rate γk from the calculated amplitude growth.
This is illustrated in figure 1 for the phase point (ρ̄, ε̄) = (6ρs,10εs), which lies well inside

the spinodal region, and using (δρ(0),δε(0)) = (0.1ρs,0.2εs). The subsequent time evolution is
obtained with ideal fluid-dynamics (without the gradient term for this illustration) and the Fourier
components of the density are extracted. The resulting time-dependent amplitudes δρk(t) are then

4
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N.B. fluctuations at high energies

There is a commonly accepted paradigm, that the azimuthal anisotropies
observed at RHIC and LHC are caused only by anisotropies in initial state

NIEMI, DENICOL, HOLOPAINEN, AND HUOVINEN PHYSICAL REVIEW C 87, 054901 (2013)

observables in an event-by-event fluid-dynamical description
[7,9].

On the other hand, if fluid dynamics can be applied to de-
scribe individual ultrarelativistic heavy-ion collisions, it must
be able to describe vn in every collision, not only the average
⟨vn⟩ev. Therefore it must be able to reproduce the distribution
P(vn) of vn in an ensemble of events too. To confirm the
applicability of fluid dynamics to describe the expansion stage
of heavy-ion collisions, it is thus not enough to check whether
the event-averaged values of vn agree with the data, but one
must also check whether their distributions, P(vn), match
what is experimentally observed. Recently, the distributions
of v2, v3, and v4 were measured at the LHC by the ATLAS
collaboration [10]. Also, the first fluid-dynamical calculations
of these distributions were performed by Gale et al. [11].

In this paper, we study the event-by-event probability
distribution of the Fourier coefficients vn, P (vn), and how they
are correlated with the initial state anisotropies ϵn event by
event. The goal of this paper is not to attempt a comparison with
experimental data, but to explore how these distributions and
correlations are affected by the fluid viscosity and initialization
of the system. In this way, it will be possible to understand what
can be learned by measuring such event-by-event distributions.

In the following we explain our fluid dynamical model
in Sec. II, and show our results in Sec. III. Section III A
is dedicated to an analysis of the event-by-event correlation
between initial condition and flow anisotropy, while in
Secs. III B and III C we show our results for probability
distributions of scaled anisotropy δvn, P (δvn), and linear
correlation coefficients c(vn, vm), respectively. In Sec. IV, we
summarize our findings and make our conclusions.

II. MODEL

To generate the initial states event by event, we use a
Monte Carlo Glauber model as implemented in Ref. [9]. In
this model, nucleons are distributed into nuclei according to
Woods-Saxon distribution. NN correlations and finite size
effects are neglected since they have a negligible effect on
the anisotropy coefficients [12]. In an event with a given
impact parameter, nucleons from different nuclei are assumed
to collide when their transverse distance d is small enough,
i.e., when d2 < σNN/π .

We consider two initial conditions, in which the initial
entropy density, s, at τ0 = 1 fm, is evaluated as

s(x, y) = W

Npart,bin∑

i=1

exp{−[(x − xi)2 + (y − yi)2]/(2σ 2)}, (4)

where xi and yi are the spatial coordinates of either wounded
nucleons (initial condition sWN) or binary collisions (initial
condition sBC), given by the Monte Carlo Glauber model.
W is a normalization constant fixed to provide the observed
multiplicity and σ = 0.8 fm is the spatial scale of a wounded
nucleon or a binary collision. The centrality classes are
determined according to the number of binary collisions (for
initial condition sBC) or the number of participants (for initial
condition sWN). The initial fluid velocity and shear-stress
tensor are set to zero and we neglect the effects of bulk
viscosity.

For the fluid-dynamical evolution, we use the model
previously employed in Ref. [13]. We describe the time
evolution of the fluid in the central rapidity region assuming
boost invariance and a zero baryochemical potential. The
equations of motion are given by the conservation laws for
energy and momentum:

∂µT µν = 0, (5)

where T µν = (ε + p)uµuν − gµνp + πµν , with ε, p, uµ, and
πµν being the energy density, the thermodynamic pressure, the
fluid four-velocity, and the shear-stress tensor, respectively.
We use the lattice QCD and hadron resonance gas based
equation of state s95p-PCE-v1 [14] with chemical freeze-out
at temperature Tchem = 150 MeV. The evolution equation of
the shear-stress tensor is given by transient relativistic fluid
dynamics [15,16]:

)
µν
αβ τπDπαβ+πµν = 2ησµν − 4

3
τππµνθ − 10

7
τπ)

µν
αβσ α

λ πβλ

+ 74
315η

τπ)
µν
αβπα

λ πβλ, (6)

where η is the shear viscosity coefficient, D = uµ∂µ is
the comoving time derivative, σµν = )

µν
αβ ∂αuβ is the shear

tensor, θ = ∂µuµ is the expansion rate, and )
µν
αβ = ()µ

α)ν
β +

)ν
α)

µ
β − 2/3)µν)αβ)/2, with )µν = gµν − uµuν . The trans-

port coefficients of the nonlinear terms on the right-hand side of
the Eq. (6) were taken in the massless limit, in the 14-moment

FIG. 1. (Color online) ϵ2 and v2 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 2. (Color online) ϵ3 and v3 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.

approximation, and the relaxation time was assumed to be
τπ = 5η/(ε + P ) [16,17]. Here, we have not included the
nonlinear terms related to the vorticity tensor. Note that the
last two terms in Eq. (6) were not included in our previous
studies [13]. While such terms can have a significant effect
on many observables, they are not relevant for the results
discussed in this paper. We shall leave a detailed investigation
of the effect of such terms to a future work. The equations of
motion were solved numerically using the SHASTA algorithm,
whereas the evolution equations for shear stress [Eq. (6)]
were solved using simple finite differencing scheme. For more
details see Refs. [13,18].

The hadron spectra are calculated with the Cooper-Frye
freeze-out procedure [19] using the decoupling temperature
Tf = 100 MeV, which was shown to give reasonable agree-
ment with both the pT spectrum and ⟨v2⟩ev for pions at RHIC
when a temperature-dependent η/s was used, see Ref. [13].
In this work, we use constant values of viscosity, η/s = 0 and
0.16. Nevertheless, the pT spectrum and ⟨v2⟩ev remain close to
what is actually observed at RHIC. Since our main purpose is
not the comparison to experimental observables, we adjusted
only the initial entropy density to fit the observed multiplicity,
but kept all the other parameters unchanged. Finally, we use
Israel and Stewart’s 14-moment ansatz for the dissipative
correction to the local equilibrium distribution function,

δfi = f0i

p
µ
i pν

i πµν

2T 2(ε + p)
, (7)

where f0i = {exp[(uµp
µ
i − µi)/T ] ± 1}−1 is the local equi-

librium distribution function, with the index i indicating
different hadron species and p

µ
i the four-momentum of the

corresponding hadron. After calculating the thermal spectra,
we include the contribution from all two- and three-particle
decays of unstable resonances up to 1.1 GeV mass.

It should be noted that because we do not generate particle
ensembles at any point we always know the direction of the
event plane and the magnitude of vn exactly. Experimentally,
one measures a finite number of particles, which smears the
observed distribution of vn. However, the final experimental
result for the vn distributions undergoes an unfolding pro-
cedure that is supposed to remove such a smearing [10].
Therefore, for a comparison with data, one can use the
particle distributions computed with fluid dynamics without
generating an ensemble of particles. A more detailed way
would be to generate the particle ensembles and apply the same
complicated unfolding procedure used by the experimentalist
to obtain the vn distribution, but this procedure would be an
unnecessary complication for the purpose of this work.

III. RESULTS

In this work we consider Au + Au collisions at√
sNN = 200 GeV. All the results shown in this paper

are for positively charged pions. For each centrality class a
total of 2000 events were computed. The Fourier coefficients
and the initial-state anisotropies were calculated according to

FIG. 3. (Color online) ϵ4 and v4 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 2. (Color online) ϵ3 and v3 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.

approximation, and the relaxation time was assumed to be
τπ = 5η/(ε + P ) [16,17]. Here, we have not included the
nonlinear terms related to the vorticity tensor. Note that the
last two terms in Eq. (6) were not included in our previous
studies [13]. While such terms can have a significant effect
on many observables, they are not relevant for the results
discussed in this paper. We shall leave a detailed investigation
of the effect of such terms to a future work. The equations of
motion were solved numerically using the SHASTA algorithm,
whereas the evolution equations for shear stress [Eq. (6)]
were solved using simple finite differencing scheme. For more
details see Refs. [13,18].

The hadron spectra are calculated with the Cooper-Frye
freeze-out procedure [19] using the decoupling temperature
Tf = 100 MeV, which was shown to give reasonable agree-
ment with both the pT spectrum and ⟨v2⟩ev for pions at RHIC
when a temperature-dependent η/s was used, see Ref. [13].
In this work, we use constant values of viscosity, η/s = 0 and
0.16. Nevertheless, the pT spectrum and ⟨v2⟩ev remain close to
what is actually observed at RHIC. Since our main purpose is
not the comparison to experimental observables, we adjusted
only the initial entropy density to fit the observed multiplicity,
but kept all the other parameters unchanged. Finally, we use
Israel and Stewart’s 14-moment ansatz for the dissipative
correction to the local equilibrium distribution function,

δfi = f0i

p
µ
i pν

i πµν

2T 2(ε + p)
, (7)

where f0i = {exp[(uµp
µ
i − µi)/T ] ± 1}−1 is the local equi-

librium distribution function, with the index i indicating
different hadron species and p

µ
i the four-momentum of the

corresponding hadron. After calculating the thermal spectra,
we include the contribution from all two- and three-particle
decays of unstable resonances up to 1.1 GeV mass.

It should be noted that because we do not generate particle
ensembles at any point we always know the direction of the
event plane and the magnitude of vn exactly. Experimentally,
one measures a finite number of particles, which smears the
observed distribution of vn. However, the final experimental
result for the vn distributions undergoes an unfolding pro-
cedure that is supposed to remove such a smearing [10].
Therefore, for a comparison with data, one can use the
particle distributions computed with fluid dynamics without
generating an ensemble of particles. A more detailed way
would be to generate the particle ensembles and apply the same
complicated unfolding procedure used by the experimentalist
to obtain the vn distribution, but this procedure would be an
unnecessary complication for the purpose of this work.

III. RESULTS

In this work we consider Au + Au collisions at√
sNN = 200 GeV. All the results shown in this paper

are for positively charged pions. For each centrality class a
total of 2000 events were computed. The Fourier coefficients
and the initial-state anisotropies were calculated according to

FIG. 3. (Color online) ϵ4 and v4 of pions in the 20–30% centrality class using different initializations and viscosities. (a) sBC and η/s = 0,
(b) sBC and η/s = 0.16, and (c) sWN and η/s = 0.16.
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FIG. 6. (Color online) ϵ4 and v4 in the 0–5% centrality class using different initializations and viscosities. (a) sBC and η/s = 0, (b) sBC
and η/s = 0.16, and (c) sWN and η/s = 0.16.

(n = 3), and Figs. 3(a) and 3(b) (n = 4). In general, the higher
Fourier coefficients are expected to be more sensitive to the
viscosity [20]. This is also the case in our calculations, and is
confirmed by comparing the relative changes in the coefficients
C2, C3 and C4.

Note that the proportionality constants Cn do not depend
only on the intrinsic properties of the fluid, but also on the
initial conditions. Again something to be expected, since in
the calculations done using averaged initial conditions, the
precise value of the proportionality depended on many details
as discussed in the Introduction.

In Figs. 4 and 5 we show the two-dimensional histograms
of ϵ2 and v2 and of ϵ3 and v3, respectively, in the 0–5%
centrality class. We plot the same cases considered above:
(a) sBC initialization with η/s = 0, (b) sBC initialization with
η/s = 0.16, and (c) sWN initialization with η/s = 0.16. For
n = 2 and n = 3 the linear correlation is still valid. Also,
the effect of shear viscosity and initialization on Cn remain
qualitatively the same. On the other hand, in Fig. 6 the
correlation between ϵ4 and v4 in central collisions is drastically
different from the correlation in the 20–30% centrality class.
In the 0–5% centrality class the linear correlation coefficient
c(ϵ4, v4) becomes much closer to 1 when compared to the
peripheral case. It can be as large as ∼0.81 obtained for the
sWN initialization with η/s = 0.16. This behavior is expected
since in Ref. [22] it was shown that ϵ4 becomes a better
estimator for v4 in central collisions.

We note that the definition of εn is not unique, but we
could use, e.g., entropy density instead of energy density as

a weight or use different powers of r in the definition. We
have checked that these different definitions slightly change
the numerical values of the correlators, and the proportionality
constants Cn, but qualitatively the results are independent of
the precise definition of εn.

B. Distributions of vn

So far the event-averaged values of vn have been extensively
studied. In order to observe what can be learned by looking
at vn probability distributions, it is convenient to remove
the average from the distributions, and study the relative
fluctuations using the scaled variables

δvn = vn − ⟨vn⟩ev

⟨vn⟩ev
, and δϵn = ϵn − ⟨ϵn⟩ev

⟨ϵn⟩ev
. (10)

In this way changes in the probability distributions due to
changes in the average values are removed.

It was shown in the previous subsection that vn and ϵn have
a strong linear correlation for n = 2 and 3. As discussed in the
Appendix, if two variables are linearly correlated, and ⟨d⟩ = 0,
the variances of the relative distributions are equal. Since
viscosity has only a small effect on the correlations of vn and
ϵn, we expect that σ 2

δvn
≈ σ 2

δϵn
, independent of viscosity. In such

a case the information about the fluid response to the initial
geometry is contained in the coefficients Cn controlling the
average ⟨vn⟩ev, while the relative fluctuations of vn originate

FIG. 7. (Color online) Probability distributions: (a) P (δv2) and P (δϵ2), (b) P (δv3) and P (δϵ3), and (c) P (δv4) and P (δϵ4), in the 20–30%
centrality class with sBC initialization and two different values of η/s, η/s = 0, and η/s = 0.16.

054901-5

[H. Niemi et al., Phys. Rev. C 87 (2013) 054901]
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Fluctuating initial conditions

Use the fluctuations of vn’s to
get the access to initial
conditions.

fluctuations of vn’s seem to
follow those of spatial
anisotropies εn’s

[Ch. Gale et al.:
Phys. Rev. Lett. 110 (2013) 012302]
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FIG. 7. (Color online) Comparison of vn(pT ) at RHIC using
constant η/s = 0.12 and a temperature dependent η/s(T ) as
parametrized in [33]. Experimental data by the PHENIX [1]
(open symbols) and STAR [35] (preliminary, filled symbols)
collaborations. Bands indicate statistical errors.
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FIG. 8. (Color online) v1(pT ) compared to experimental data
from the ALICE [37] and ATLAS [38] collaborations.

not necessarily the only explanation. In fact, for RHIC
energies, calculated pion spectra also underestimate the
data for pT < 300 MeV but v1(pT ) is well reproduced.

We present event-by-event distributions of v2, v3, and
v4 compared to results from the ATLAS collaboration
[40, 41] in Fig. 9. We chose 20-25% central events be-
cause eccentricity distributions from neither MC-Glauber
nor MC-KLN models agree with the experimental data
in this bin [41]. To compare data with the distribution
of initial eccentricities [42] from the IP-Glasma model
and the final vn distributions after hydrodynamic evolu-
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the ATLAS collaboration [40, 41]. 1300 events. Bands are
systematic experimental errors.

tion, we scaled the distributions by their respective mean
value. We find that the initial eccentricity distributions
are a good approximation to the distribution of experi-
mental vn. Only for v4 (and less so for v2) the large vn

end of the experimental distribution is much better de-
scribed by the hydrodynamic vn distribution than the εn

distribution. This can be explained by non-linear mode
coupling becoming important for large values of v2 and
v4.

In summary, we have shown that the IP-
Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [19, 36, 43–47]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that
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Fragmentation (cavitation) due to bulk viscosity

rate of energy density decrease with
bulk viscosity

uµ∂µε

ε
=
ε+ p − ζ∂ρuρ

ε
∂µu

µ

effective decrease of the pressure due
to bulk viscosity

TTc

ζ/T3

fragment size estimate in Bjorken scenario

L2 =
24ζc

εc∂µuµ|τ=τc

G. Torrieri, B. Tomášik, I.N. Mishustin, Phys. Rev. C 77 (2008) 034903
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Rapidity correlations

If the fireball fragments, hadrons will be correlated

choose protons: heavy (less thermal smearing) and still abundant
(good statistics)

correlation functions in 3D rapidity differences:

y12 = ln
[
γ12 +

√
γ12− 1

]
γ12 =

p1 · p2

m1m2

J. Randrup, Heavy Ion Physics 22 (2005) 69
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Rapidity difference correlation function for protons

all hadrons emitted from
droplets

at FAIR/NICA expect
bigger droplets

lines color coding:
FAIR/NICA,
RHIC 130,
RHIC 130 no resonances
LHC

96 The European Physical Journal A
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Fig. 5. (Colour on-line) Correlation functions in y12 for√
sNN = 130 GeV with all particles emitted from droplets and

b = 50 fm3. Different curves show: the full correlation func-
tion with all resonance decays included (red dotted), the re-
sult from a simulation with no resonance production included
(green solid), the result from a simulation with resonances in-
cluded but protons coming from decays of Delta resonances
were not taken into analysis (blue dash-dotted).

pected that this effect will always dominate the influence
on the correlation function.

In fig. 5 we also see that the dominant contribution
within the resonance decays that produce protons comes
from the deltas.

We next turn to predictions of the proton rapidity cor-
relations at other collision energies. First is that of few
GeV per nucleon. This is the domain that should be stud-
ied with the help of the planned programs at RHIC energy
scan, SPS energy scan, FAIR in Darmstadt, and NICA at
JINR, Dubna. This energy domain seems important since
the critical point of the QCD phase diagram is suspected
to be here. If so, these accelerators might bring us into the
region of the phase diagram with first-order phase tran-
sition where spinodal decomposition [8,9] and the subse-
quent emission of hadrons from droplets can happen.

For this energy we choose a Gaussian profile of the
fireball in the space-time rapidity η, with the width ∆η =
0.7. The chemical composition is taken from the analysis
of Pb+Pb collisions at CERN SPS at

√
sNN = 9GeV [19]:

the chemical freeze-out temperature is 140MeV and the
baryochemical potential is 428MeV. The kinetic freeze-
out temperature agrees with that of chemical freeze-out.
Again, there is a transverse flow with ρ0 = 0.4. The total
multiplicity is 1250. As a result, on average there are 135
protons per event. The results on the correlation functions
are very similar to those obtained for

√
sNN = 130GeV

and are therefore not shown separately.

We also make simulations for a fireball as expected
in Pb+Pb collisions at

√
sNN = 7TeV at the LHC. Due

to near nuclear transparency the baryochemical potential
is taken at 1MeV while the chemical freeze-out temper-
ature is 170MeV. The kinetic freeze-out temperature is
set to 150MeV and there is a slightly higher transverse
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Fig. 6. (Colour on-line) Comparison of correlation functions
in y12 for different collision energies. For the parameter sets
see the text. All hadrons are emitted from droplets with b =
50 fm3. Different curves show:

√
sNN = 9 GeV (red dotted),√

sNN = 130 GeV (blue dash-dotted),
√

sNN = 130GeV with-
out resonances in the simulation (green solid),

√
sNN = 7 TeV

(black dash–double-dotted).

expansion gradient ρ0 = 0.8. The multiplicity density
dN/dy = 2000.

Since the results at all investigated collision energies
are qualitatively very similar, we only show in fig. 6 a
comparison of the correlation functions at different colli-
sion energies. The amplitude of the correlation function
is the highest for the lowest collision energy. This is due
to the regime with the lowest average dN/dy where clus-
terization in momentum space is best visible. Somewhat
surprising, the correlation function for

√
sNN = 9GeV is

also the widest. We expected just the opposite since the
kinetic freeze-out energy there was lower than in the other
two cases. The larger width of the correlation function is
caused by the Gaussian profile of the fireball in space-time
rapidity in comparison with uniform profiles at higher en-
ergies. Again, we can understand the effect to some extent
from eq. (19): a source with narrow rapidity distribution
will have smaller ξ. This broadens the peak of the Gaus-
sian correlation function. Paradoxically, a fireball that is
very narrow in space-time rapidity will have a wide cor-
relation function. As can be concluded from eq. (19), the
feature that a narrower rapidity spectrum leads to a wider
correlation function is rather general.

5 Conclusions

Correlation functions in relative rapidity appear to be a
powerful tool for the study of clustering of hadron pro-
duction due to fragmentation. Note that in calculating the
correlation functions we did not include the effect of the
final-state interaction (strong and Coulomb) between the
protons [16], which governs the correlation function in the
absence of other effects. The strong interaction enhances
the correlation of near protons at a relative momentum of
about 25MeV and the Fermi-Dirac statistics leads to de-

Signal weaker if only a fraction of all hadrons from droplets

here neglected Fermi-Dirac statistics and strong interaction: expect
effect at 25 MeV (small relative rapidity)

M. Schulc, B. Tomášik, Eur. Phys. J. A 45 (2010) 91
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Comparison of rapidity distribution

If there are fluctuations, each event (from the same centrality class)
will have a different rapidity distribution.

Spinodal fragmentation will lead to droplets which will emit hadrons.

How do we recognise a non-statistical difference between two
empirical distributions?

Boris Tomášik (UMB & ČVUT) Non-equilibrium phase transition CBM Physics day, 16.9.2015 11 / 28



Are these realisations of the same distribution?
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The Kolmogorov-Smirnov test

Are two empirical distributions generated by the same probability density?
Construct distance D between two emipirical distributions (event rapidity
distributions) for all event pairsIVAN MELO et al. PHYSICAL REVIEW C 80, 024904 (2009)

FIG. 1. (Color online) Construction of the two empirical cumu-
lative distribution functions, one denoted with a thin solid (blue)
line and one with a thick dashed (red) line. The maximum distance
between them is D.

In the Appendix we review the evaluation of the cumulative
distribution function for the Kolmogorov distribution.

II. THE KOLMOGOROV-SMIRNOV TEST AND
HOW TO USE IT

Let us start by explaining the technical part of the problem.
One has two empirical distributions in variable x, which can be
rapidity, pt , or something else.2 (In the present work we work
with rapidities.) The multiplicities may differ. The question
we want to ask is whether the two empirical distributions are
the same in the sense that they would correspond to the same
underlying theoretical single-particle probability density and
there are no correlations between particles in one event.

Practically, the quantity x is measured for each particle
in an event. The empirical cumulative distribution function
(ECDF) is constructed so that a step of the height 1/ni (ni

is the multiplicity of the event) is made on all positions of
measured x’s (Fig. 1). This is done for both events of a
pair. Subsequently, one finds the maximum vertical distance
between the two ECDFs and introduces scaled distance,

d =
√

nD =
√

n1n2

n1 + n2
D, (1)

where D is the distance of two ECDFs and n1 and n2 are the
multiplicities of the two data sets. The procedure of the test is
illustrated in Fig. 1.

Let us first consider a situation where many events are
generated from the same distribution ρ(x). We define Q(d) as
the probability that the randomly chosen event pair from our
set of events has their scaled distance d ′ bigger than d,

Q(d) = P (d ′ > d). (2)

Thus Q(d) is the fraction of event pairs with scaled distance
larger than d, if all events were from the same distribution
ρ(x). It follows that the values of Q calculated for a large set
of event pairs will be distributed uniformly, provided that all
events are from the same distribution. Calculation of this Q is

2Note that for a cyclic variable, e.g., azimuthal angle φ, the KS test
cannot be applied and instead a modification known as the Kuiper
test [25,26] must be employed.

presented in the Appendix. Note that Q(d) does not depend on
the shape of the underlying event distribution ρ(x); it is only
important that all events have the same ρ(x). Unfortunately,
general expression for Q(d) for any multiplicity is not suitable
for practical evaluation. The Appendix summarizes usable
approximations.

Now we release the requirement that all events be generated
from the same distribution. We obtain a set of Q’s with
the same procedures and formulas as before [in particular,
Eq. (A3)] on a large number of event pairs. With events
from different distributions, these Q’s will not be distributed
uniformly. Thus a deviation from uniform distribution, partic-
ularly an enhanced population of low Q’s (large d’s) indicates
that the events are not drawn independently from the same
underlying distribution. In this way the KS test is used here.

Note that the KS test does not identify the physical origin of
the difference between the events. It is a robust way to identify
that there is a difference; however, the origin must be singled
out by other means. In addition to fireball fragmentation,
these can be fluctuations of the initial state of the fireball
evolution, final resonance decays, conservation laws, and
quantum correlations. A detailed investigation of these will
be pursued in subsequent articles. The important message of
the KS test is that it can disprove the usual paradigm that data
from many collisions (within the same centrality class) are
produced by basically identical fireballs.

It is important to realize that the number of significant
decimal figures to which the quantity x (rapidity here) is
measured may also influence the result of the KS test if it is
applied on a large number of pairs of events. This is illustrated
in Fig. 2. The peak at Q → 1 increases with lowering the
number of decimal places taken into account. The explanation
is trivial but instructive. Only rapidities between 0 and 1 were
generated. Within 105 events, each having multiplicity around
200, there are about 2 × 107 particles. Hence, if their values
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FIG. 2. (Color online) Histograms of Q’s from the KS test applied
on 105 pairs out of 105 events generated from a uniform distribution
between 0 and 1 in the variable x (rapidity) and with multiplicities
distributed according to Poisson distribution with the mean 200.
Different histograms correspond to rapidity data truncated after
2, 4, and 6 decimal places. The histogram with 8 significant figures
is identical to that with 6 figures.

024904-2

Take away the effect of multiplicity

d =

√
n1n2

n1 + n2
D

Use the probability Q(d): probability, that randomly selected pair of events
generated by the same distribution will have their distance bigger than d .

Events from the same distribution will lead to uniform Q-distribution.
Non-statistically different events will show a peak at small Q.
(There are formulas to calculate Q(d).)
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Convolution of droplets which emit pions

uniformly distributed Gaussian sources with the width 0.707

always the same total multiplicityIVAN MELO et al. PHYSICAL REVIEW C 80, 024904 (2009)
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FIG. 5. (Color online) The effect of the number of Gaussian
sources on the Q histogram. In the legend, the number of Gaussian
sources distributed uniformly between −1 and 1 is on the left, and
the average number of pions from each source is on the right. The
width of each Gaussian source was 0.707.

DRAGON assumes that the fireball decays into droplets
that are distributed according to the blast-wave model. Thus
their distribution in position and velocity is given by

SD(x, v) ∝ H (η) "(R − r) δ(τ − τ0) δ(4)(v − u(x)), (4)

where we use polar coordinates r and φ, and the space-time
rapidity and longitudinal proper time,

η = 1
2

ln
t + z

t − z
(5)

τ =
√

t2 − z2, (6)

as coordinates in the space-time. The fireball has a transverse
radius R and τ0 is the Bjorken proper time of the decay. The
four-velocity of the droplet v is given by the local flow velocity
at the position where the droplet is created,

uµ(x) = (cosh η cosh ηt , cos φ sinh ηt ,

sin φ sinh ηt , sinh η cosh ηt ), (7)

with

ηt =
√

2ρ0r

R
, (8)

where ρ0 is a model parameter. (The model is designed so
that it can simulate azimuthally nonsymmetric fireballs, but
we do not explore such a possibility here.) The function H (η)
specifies the space-time rapidity distribution. It can be uniform
or Gaussian. For the present investigation we use the uniform
distribution in rapidity.

The volumes of the droplets are random according to a '
distribution

P2(V ) = 1
b'(2)

V

b
exp (−V/b) , (9)

with a model parameter b. The droplets decay into hadrons
exponentially in time, so the times of emission of the
droplets are distributed in the rest frame of the emitting
droplet according to exp(−τ/RD), where RD is the radius
of the droplet. A droplet emits hadrons according to thermal

distribution with a temperature Tk , until it uses up all of its
mass. The mass of the droplet is determined according to its
volume and the energy density, which is set to 0.7 GeV fm−3.

Hadrons may be emitted from the droplets or produced in
the remaining space between them. The relative abundance of
those emitted from droplets is specified as a model parameter.
Hadrons emitted from the bulk are generated according to the
blast-wave emission function [27–29]

S(x, p)d4x = 2s + 1
(2π )3

mt cosh(y − η) exp
(

−pµuµ

Tk

)

×"(R − r)H (η) δ(τ − τ0)dτ τ dη r dr dφ.

(10)

Here the factor (2s + 1) denotes spin degeneracy.
Resonances are included in the simulation. They decay

according to the standard two-body or three-body kinematics.
Probabilities of production of individual species are given
by the statistical model with a chemical freeze-out temper-
ature Tch and chemical potentials for baryon number and
strangeness.

V. FLUCTUATING RAPIDITY DISTRIBUTIONS

The Monte Carlo event generator DRAGON is employed
[24] to simulate realistic data on which the KS test is per-
formed. We use the test on data generated for RHIC Au + Au
collisions at

√
s = 200A GeV and for FAIR Au + Au col-

lisions at
√

s = 7.6A GeV. For the data analysis we accept
hadrons within the rapidity interval [–0.5,0.5].

For RHIC, we have generated events with uniform rapidity
distribution in the interval [–3,3]. The total hadron multiplicity
was set to dN/dy = 1000. The chemical composition is
determined by the following choice of parameters: Tch =
155 MeV and µB = 26 MeV [30]. We neglect the strangeness
chemical potential. The list of resonances includes mesons
up to a mass of 1.5 GeV/c2 and baryons up to 2 GeV/c2.
The geometry of the decaying fireball is given by the radius
R = 10 fm and τ0 = 9 fm/c. The dynamical state of the fireball
is set by the kinetic freeze-out temperature Tk = 150 MeV
and the transverse expansion gradient ρ0 = 0.6. We set the
volume parameter of the droplets b to the value of 10 fm3. As
a first benchmark, complementary samples of 10 000 events are
generated: one with all particles being emitted from droplets,
the other with all particles being emitted from the bulk fireball.

As a second benchmark test we generate 10 000 events
at the FAIR energy of

√
s = 7.6A GeV, where no particles

are emitted from droplets. In this case the chemical freeze-out
parameters are set to the corresponding values Tch = 140 MeV,
µB = 375 MeV, and µS = −53 MeV. The kinetic freeze-out
temperature is Tk = 140 MeV and the transverse expansion
of the fireball is characterized by ρ0 = 0.4. Here, the rapidity
distribution is Gaussian with a width of 0.7 and the total hadron
multiplicity is 1500. The transverse radius of the fireball and
its Bjorken lifetime are 9 fm and 8 fm/c, respectively.

In Fig. 6 we show the difference between the Q histograms
from events with and without droplets. For the RHIC energy,
one observes a characteristic enhancement toward small Q

024904-4
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Application to Monte-Carlo-generated data

DRAGON:
Blast-wave model
with possible droplet
production

lines color coding:
RHIC with droplets,
RHIC no droplets,
FAIR no droplets

KOLMOGOROV-SMIRNOV TEST AND ITS USE FOR THE . . . PHYSICAL REVIEW C 80, 024904 (2009)
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FIG. 6. (Color online) The Q histograms resulting from simulations of realistic hadronic final states with the help of DRAGON. Solid
(red) histograms correspond to simulation of RHIC Au + Au collisions with droplets. Dashed (blue) histograms are from simulations at RHIC
without droplets. Dotted (brown) histograms show the results of simulations for nuclear collision at FAIR without fragmentation. Different
panels show results obtained for all hadrons, charged hadrons, π+, π−, charged pions, protons and antiprotons. The values of R are indicated
in the panels.

values in the case of particle emission from droplets for all
investigated particle species except (anti-)protons. (For the
setting without droplets (i.e., only bulk emission) this low
Q enhancement is strongly suppressed. Quantitatively, this
is reflected in a factor of 10 difference of the extracted R
values. The RHIC results without droplet formation are also
in line with the results obtained at FAIR energies, showing
that the KS test does not produce falsely positive results

when going to smaller samples with a different rapidity
distribution.

Resonance decays also have a clustering effect on the decay
products. Therefore, a signal of clustering is also seen in the set
of events without droplets. In the case of all hadrons, these are
mainly ρ’s and #’s. If we limit our analysis to pions only, then
there is correlation due to the ρ. To test this hypothesis, one
can perform the KS test with protons only, because there is no

024904-5
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Kolmogorov-Smirnov test is a powerful tool to check if there are
droplets/clusters observed in the observed events.

I. Melo et al., Phys. Rev. C. 80 (2009) 024904
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Event shapes

How to do Event Shape Engineering among these shapes. . . ?
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. . . ordered
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Similar events

in similar events the evolution is likely to be similar

analyse samples of similar events!

How to select similar events?
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Event Shape Sorting: the algorithm

We will sort events according to their histograms in azimuthal angle.

1 (Rotate the events appropriately)

2 Sort your events as you wish

3 Divide sorted events into quantiles (we’ll do deciles)

4 Determine average histograms in each quantiles

5 For each event i calculate Bayesian probability P(i |µ) that it belongs
to quantile µ

6 For each event calculate average µ̄ =
∑

µ µP(i |µ)

7 Sort events according to their values of µ̄

8 If order of events changed, return to 3. Otherwise sorting converged.

S. Lehmann, A.D. Jackson, B. Lautrup, arXiv:physics/0512238
S. Lehmann, A. D. Jackson and B. E. Lautrup, Scientometrics 76 (2008) 369

[physics/0701311 [physics.soc-ph]]
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Average histograms for random sorting ’before’

Only fluctuating v2
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Average histograms for random sorting ’after’

Only fluctuating v2
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Toy Model: q2 sorting

Generated 5000 events
up to v2,
v2 = aM2 + bM + c

M ∈ (300, 3000)

Initial rotation: Ψ2

Sort: q2
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Initial sorting variable: q2
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Elliptic flow for q2 sorting

Correlation v2 and µ:
0.959

Obvious linear
dependence

v2 might be a better
measure than q2
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v2 (event plane method)
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More realistic: all orders of anisotropy

No correlation with any of the conventional measures
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More realistic anisotropy: sorting
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Event Shape Sorting

The same method can be applied on rapidity distributions or even on
2D histograms

Event Shape is determined in more complicated way than single
variable can characterize

ESS might be useful (necessary?) for building mixed events samples
in the construction of correlation functions

ESS might be useful for Single Event Femtoscopy

R. Kopečná, B. Tomášik: arxiv:1506.06776
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Summary

spinodal fragmentation at the first-order phase transition

first-order phase transition would lead to baryon number/density
fuctuations ad correlations (correlation function, Kolmogorov-Smirnov
test)

there could be fragmentation also at higher collision energies due to
bulk viscosity peak—what would be the unique signal of critical point

Event Shape Sorting - look at events with similar shapes
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