Hadrons in Vacuum and in Medium in an Effective Chiral Approach

Dirk H. Rischke

Institut für Theoretische Physik

with:

Florian Divotgey, Jürgen Eser, Walaa Eshraim, Anja Habersetzer, Stanislaus Janowski, Lisa Olbrich, Stefan Strüber, Thomas Wolkanowski, Werner Deinet, Susanna Gallas, Achim Heinz, Denis Parganlija, Khaled Teilab, Marc Wagner, Francesco Giacosa (Jan Kochanowski University, Kielce), Peter Kovacs, Gyuri Wolf, Miklos Zetenyi (Wigner Research Center for Physics, Budapest)

Generating the mass of visible matter

Ξ

Spontaneous symmetry breaking in gauge theories: Anderson–Higgs mechanism

$$U(\phi) = -\mu^2 \phi^2 + \lambda \phi^4 \implies \langle \phi \rangle = \sqrt{\frac{\mu^2}{2\lambda}} \neq 0$$

$$\int_{\Phi_{RE}} \phi_{RE} = \frac{1}{\sqrt{\frac{\mu^2}{2\lambda}}} \phi_{RE}$$

Most of the visible mass in the universe consists of nucleons with mass $m_N \sim 1 \text{ GeV}$ A nucleon consists of 3 up and down quarks However: $3 m_{u,d} \sim 10 \text{ MeV} \sim 0.01 m_N$

- \implies where do the other 99 % of the visible mass in the universe come from?
- \implies spontaneous breaking of (global) chiral $U(N_f)_r \times U(N_f)_\ell$ symmetry of QCD
- \implies order parameter $\langle \bar{q}q \rangle \neq 0$

$$\implies U(N_f)_r imes U(N_f)_\ell \longrightarrow U(N_f)_{r+\ell}$$

$$\implies m_{u,d} \sim \langle ar{q}q
angle + \ldots \sim 300 \,\, {
m MeV}$$

- \implies Goldstone bosons: pseudoscalar mesons $\pi\,,\,K\,,\,\eta\,,\,\eta'$
- \implies "Higgs" particle of QCD: as we shall see, it is $f_0(1370)$

 $T \geq T_c: \langle \phi
angle = 0 \implies ext{symmetry restored}$

The QCD phase diagram

Hadronic phase:Confinement of quarks and gluonsChiral symmetry broken $\langle \bar{q}q \rangle \neq 0$ Quark-Gluon Plasma:Deconfined quarks and gluonsChiral symmetry restored $\langle \bar{q}q \rangle \simeq 0$

Heating and compressing QCD matter \implies heavy-ion collisions!

 \implies Study phase transitions (in particular, chiral transition) in fundamental theory of nature (QCD) in the laboratory!

Probes of hot and dense matter

Electromagnetic probes interact weakly with strong-interaction matter
 ⇒ Dileptons carry information from hot and dense matter created in heavy-ion collisions:

⇒ vector-meson spectroscopy: learn about chiral symmetry restoration in hot and dense hadronic matter! R. Rapp, J. Wambach, Adv. Nucl. Phys. 25 (2000) 1

An effective chiral approach

Chiral symmetry of QCD: global $U(N_f)_r \times U(N_f)_\ell$ symmetry (classically)

- \implies spontaneously broken in vacuum by nonzero quark condensate $\langle \bar{q}q \rangle \neq 0$
- \implies restored at nonzero temperature T and chemical potential μ
- \implies degeneracy of hadronic chiral partners in the chirally restored phase
- \implies for this application: chiral symmetry must be linearly realized
- \implies Linear sigma model

Disclaimer: No attempt to fit precision data for hadron vacuum phenomenology!

(No attempt to compete with chiral perturbation theory) Nevertheless: achieve reasonable description of hadron vacuum phenomenology! Moreover: strong statement on the nature of the scalar mesons! scalar-meson puzzle: too many scalar states to fit into a $q\bar{q}$ meson nonet $f_0(500), f_0(980), f_0(1370), f_0(1500), f_0(1710)$

- $\implies \text{Jaffe's conjecture:} \quad \text{R.L. Jaffe, PRD 15 (1977) 267, 281} \\ \text{two scalar } [qq][\bar{q}\bar{q}] \text{ tetraquark states mix with two scalar } q\bar{q} \text{ meson states} \\ \end{aligned}$
- \implies fifth scalar meson could be due to mixing with glueball

Scalar and pseudoscalar mesons

$$\begin{bmatrix} \mathcal{L}_{S} = \operatorname{Tr}\left(\partial_{\mu}\Phi^{\dagger}\partial^{\mu}\Phi - \boldsymbol{m}^{2}\Phi^{\dagger}\Phi\right) - \boldsymbol{\lambda}_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger}\Phi\right)\right]^{2} - \boldsymbol{\lambda}_{2}\operatorname{Tr}\left(\Phi^{\dagger}\Phi\right)^{2} \\ + \boldsymbol{c}\left(\operatorname{det}\Phi - \operatorname{det}\Phi^{\dagger}\right)^{2} + \operatorname{Tr}\left[\boldsymbol{H}\left(\Phi + \Phi^{\dagger}\right)\right] + \operatorname{Tr}\left[\boldsymbol{E}\Phi^{\dagger}\Phi\right] \end{bmatrix}$$

 $egin{aligned} \Phi \in (N_f^*, N_f) & \Longrightarrow \Phi \equiv \phi_a T_a, \ T_a ext{ generators of } U(N_f), \ \phi_a \equiv \sigma_a + i \pi_a, \ H \equiv h_a C_a \ , \ E \equiv \epsilon_a C_a \ , \ C_a \equiv T_a, \ a = 3, 8 \end{aligned}$

 \implies H, E account for different non-zero quark masses

$$\begin{array}{l} h_a = \epsilon_a = c = 0, \ m^2 > 0 \colon U(N_f)_r \times U(N_f)_\ell \ \text{symmetry} \\ h_a = \epsilon_a = c = 0, \ m^2 < 0 \colon \ \textbf{v.e.v.} \ \langle \Phi \rangle = \phi \ N_f \ T_0, \ \phi \equiv \langle \sigma_0 \rangle > 0 \\ & \text{Spontaneous symmetry breaking (SSB):} \\ U(N_f)_r \times U(N_f)_\ell \to U(N_f)_V \quad (V \equiv \ell + r) \\ h_a = \epsilon_a = 0, \ c \neq 0 \colon \qquad U(1)_A \ \text{anomaly} \ (A \equiv \ell - r) \\ & \text{Explicit symmetry breaking (ESB):} \\ U(N_f)_r \times U(N_f)_\ell \to SU(N_f)_r \times SU(N_f)_\ell \times U(1)_V \\ m^2 < 0 \colon \ \text{SSB:} \ SU(N_f)_r \times SU(N_f)_\ell \to SU(N_f)_V \\ & \dim[SU(N_f)_r \times SU(N_f)_\ell / SU(N_f)_V] = N_f^2 - 1 \\ & \implies N_f^2 - 1 \ \text{Goldstone bosons} \ \implies \text{pseudoscalar mesons} \\ h_a, \ \epsilon_a, \ c \neq 0, \ m^2 < 0 \colon \ \text{ESB} \ \implies \ N_f^2 - 1 \ \text{pseudo} - \ \text{Goldstone bosons} \end{array}$$

Vector and axial-vector mesons

Vector-meson spectroscopy requires inclusion of vector mesons Linearly realized chiral symmetry requires inclusion of axial-vector mesons

$$egin{aligned} \mathcal{L}_V &= -rac{1}{4} \operatorname{Tr}(\mathcal{L}_{\mu
u}^0 \mathcal{L}_0^{\mu
u} + \mathcal{R}_{\mu
u}^0 \mathcal{R}_0^{\mu
u}) + \operatorname{Tr}\left[\left(rac{1}{2} \, oldsymbol{m}_1^2 + \Delta
ight) \, \left(\mathcal{L}_\mu \mathcal{L}^\mu + \mathcal{R}_\mu \mathcal{R}^\mu
ight)
ight] \ &+ i \, rac{g_2}{2} \, \operatorname{Tr}\left\{ \mathcal{L}_{\mu
u}^0 [\mathcal{L}^\mu, \mathcal{L}^
u] + \mathcal{R}_{\mu
u}^0 [\mathcal{R}^\mu, \mathcal{R}^
u]
ight\} \ &+ g_3 \, \operatorname{Tr}\left(\mathcal{L}^\mu \mathcal{L}^
u \mathcal{L}_\mu \mathcal{L}_
u + \mathcal{R}^\mu \mathcal{R}^
u \mathcal{R}_\mu \mathcal{R}_
u) - g_4 \, \operatorname{Tr}\left(\mathcal{L}^\mu \mathcal{L}_\mu \mathcal{L}^
u \mathcal{L}_
u + \mathcal{R}^\mu \mathcal{R}_\mu \mathcal{R}^
u \mathcal{R}_
u) \ &+ g_5 \, \operatorname{Tr}\left(\mathcal{L}^\mu \mathcal{L}_\mu \right) \, \operatorname{Tr}\left(\mathcal{R}^
u \mathcal{R}_
u) \ &+ g_6 \, \left[\operatorname{Tr}\left(\mathcal{L}^\mu \mathcal{L}_\mu \right) \, \operatorname{Tr}\left(\mathcal{L}^
u \mathcal{L}_
u \right) + \operatorname{Tr}\left(\mathcal{R}^\mu \mathcal{R}_\mu \right) \, \operatorname{Tr}\left(\mathcal{R}^
u \mathcal{R}_
u)
ight] \end{aligned}$$

$$\mathcal{L}^0_{\mu
u}\equiv\partial_\mu\mathcal{L}_
u-\partial_
u\mathcal{L}_\mu, \ \ \mathcal{R}^0_{\mu
u}\equiv\partial_\mu\mathcal{R}_
u-\partial_
u\mathcal{R}_\mu, \ \ \mathcal{L}_\mu\equiv L^a_\mu T_a, \ \ \mathcal{R}_\mu\equiv R^a_\mu T_a$$

vector mesons: $V_{\mu}^{a} \equiv \frac{1}{2} \left(L_{a}^{\mu} + R_{\mu}^{a} \right)$, axial-vector mesons: $A_{\mu}^{a} \equiv \frac{1}{2} \left(L_{a}^{\mu} - R_{\mu}^{a} \right)$ $\Delta = \delta_{a}C_{a}$: accounts for different quark masses (like E)

 g_3, g_4, g_5, g_6 : not determined by global fit to masses and decay widths

Scalar – vector interactions

$$egin{split} \mathcal{L}_{SV} &= i\,m{g}_1\,\mathrm{Tr}\left[\partial_\mu\Phi\left(\Phi^\dagger\mathcal{L}^\mu-\mathcal{R}^\mu\Phi^\dagger
ight)-\partial_\mu\Phi^\dagger\left(\mathcal{L}^\mu\Phi-\Phi\mathcal{R}^\mu
ight)
ight]\ &+rac{h_1}{2}\,\mathrm{Tr}\left(\Phi^\dagger\Phi
ight)\,\mathrm{Tr}\left(\mathcal{L}_\mu\mathcal{L}^\mu+\mathcal{R}_\mu\mathcal{R}^\mu
ight)+(m{g}_1^2+m{h}_2)\,\mathrm{Tr}\left(\Phi^\dagger\Phi\mathcal{R}_\mu\mathcal{R}^\mu+\Phi\Phi^\dagger\mathcal{L}_\mu\mathcal{L}^\mu
ight)\ &-2(m{g}_1^2-m{h}_3)\,\mathrm{Tr}\left(\Phi^\dagger\mathcal{L}_\mu\Phi\mathcal{R}^\mu
ight) \end{split}$$

SSB: • induces mass splitting, e.g. $m_{a_1}^2 - m_{\rho}^2 = (g_1^2 - h_3)\phi_N^2$

• induces bilinear terms, e.g. $\sim g_1 d_{abc} \phi_a A_b^{\mu} \partial_{\mu} \pi_c :$ \implies eliminate by shift, e.g. $A_a^{\mu} \rightarrow A_a^{\mu} + w_{a_1}(\phi_N) \partial^{\mu} \pi_a , \ a = 1, 2, 3,$ $w_{a_1}(\phi_N) \equiv \frac{g_1 \phi_N}{m_{a_1}^2}$

 \implies wave function renormalization of scalar and pseudoscalar fields, e.g.

$$\pi_a
ightarrow Z_\pi \, \pi_a \; , \; \; Z_\pi^2 \equiv \left(1 - rac{g_1^2 \phi_N^2}{m_{a_1}^2}
ight) \qquad (\; {
m KSFR} : Z_\pi \equiv \sqrt{2} \;) \ \Longrightarrow \; {
m v.e.v.} \; \phi_N \equiv Z_\pi \, f_\pi$$

$$\implies$$
 complete meson Lagrangian $\mathcal{L}_M = \mathcal{L}_S + \mathcal{L}_V + \mathcal{L}_S$

Vacuum phenomenology: Global fit for $N_f = 3$ (I)

 $N_f = 3 \implies ext{two scalar-isoscalar mesons } f_0^L, \ f_0^H ext{ (combinations of } ar{q} q ext{ and } ar{s} s) \ \implies ext{all (pseudo-)scalar masses and decay widths except those of } f_0^L, \ f_0^H ext{ determined by linear combination of } m^2, \ \lambda_1 ext{ and of } m_1^2, \ h_1$

Since nature of scalar-isoscalar mesons (quarkonium, glueball, or four-quark state?) is unclear

- \implies at first omit scalar-isoscalar mesons from the fit
- $\implies ext{ perform } \chi^2 ext{--fit of } m^2, \lambda_2\,, c\,, h_0\,,\, h_8\,, m_1^2\,, \delta_S\,, g_1\,,\, g_2\,,\, h_2\,,\, h_3$

(11 parameters) to 21 experimental quantities

D. Parganlija, F. Giacosa, P. Kovacs, Gy. Wolf, DHR, PRD 87 (2013) 014011 Constraints: (i) no isospin violation

> $\implies \text{experimental error} = \max(\text{PDG error}, 5\%)$ (ii) $m^2 < 0$ (SSB) (iii) $\lambda_2 > 0$, $\lambda_1 > -\lambda_2/2$ (boundedness of potential) (iv) $m_1 \ge 0$ (boundedness of potential) (v) $m_1 \le m_{\rho}$ (SSB increases mass of vector mesons)

Vacuum phenomenology: Global fit for $N_f = 3$ (II)

Observable	Fit [MeV]	Experiment [MeV]
f_{π}	96.3 ± 0.7	92.2 ± 4.6
f_K	106.9 ± 0.6	110.4 ± 5.5
m_π	141.0 ± 5.8	137.3 ± 6.9
m_K	485.6 ± 3.0	495.6 ± 24.8
m_η	509.4 ± 3.0	547.9 ± 27.4
m_{η^\prime}	962.5 ± 5.6	957.8 ± 47.9
$m_ ho$	783.1 ± 7.0	775.5 ± 38.8
m_{K^\star}	885.1 ± 6.3	893.8 ± 44.7
m_{ϕ}	975.1 ± 6.4	1019.5 ± 51.0
m_{a_1}	1186 ± 6	1230 ± 62
$m_{f_1(1420)}$	1372.5 ± 5.3	1426.4 ± 71.3
m_{a_0}	1363 ± 1	1474 ± 74
$m_{K_0^\star}$	1450 ± 1	1425 ± 71
$\Gamma_{ ho ightarrow\pi\pi}$	160.9 ± 4.4	149.1 ± 7.4
$\Gamma_{K^\star o K\pi}$	44.6 ± 1.9	46.2 ± 2.3
$\Gamma_{\phi ightarrow ar{K}K}$	3.34 ± 0.14	3.54 ± 0.18
$\Gamma_{a_1 ightarrow ho \pi}$	549 ± 43	425 ± 175
$\Gamma_{a_1 o \pi \gamma}$	0.66 ± 0.01	0.64 ± 0.25
$\Gamma_{f_1(1420) ightarrow K^\star K}$	44.6 ± 39.9	43.9 ± 2.2
Γ_{a_0}	266 ± 12	265 ± 13
$\Gamma_{K_0^\star o K\pi}$	285 ± 12	270 ± 80

accuracy of fit: $\chi^2/d.o.f. \simeq 1.23$

Vacuum phenomenology: Global fit for $N_f = 3$ (III)

large– N_c suppressed parameters $\lambda_1 = h_1 \equiv 0$:

- \implies prediction for the masses of the isoscalar-scalar states: $m_{f_0^L} = 1362.7 \text{ MeV}, \, m_{f_0^H} = 1531.7 \text{ MeV}$
- $\implies ext{masses are in the range of the heavy scalar states:} \ m_{f_0(1370)} = (1350 \pm 150) ext{ MeV}, \ m_{f_0(1500)} = (1505 \pm 75) ext{ MeV}, \ m_{f_0(1710)} = 1720 \pm 86 ext{ MeV}$
- \implies mass of f_0^L close to mass of $f_0(1370)$
- \implies mass of f_0^H close to $f_0(1500)$
- $\implies f_0(1370) \,, \, f_0(1500) ext{ appear to be (predominantly) } ar{q} q$ -states
- \implies chiral partners of $\pi, \eta'!$
- $\implies \text{ light scalar states } f_0(500), f_0(980) \text{ could be (predominantly) } [qq][\bar{q}\bar{q}]\text{-states,}$ as suggested by Jaffe R.L. Jaffe, PRD 15 (1977) 267, 281 see, however, W. Heupel, G. Eichmann, C.S. Fischer, PLB 718 (2012) 545 $\implies \text{ light scalars have a dominant } (\bar{q}q)(\bar{q}q) \text{ component!}$

Low-energy limit (I)

Does the model have the same low-energy limit as QCD?

- \implies low-energy limit of QCD: chiral perturbation theory
- $\implies ext{ take } \mathcal{L}_{\chi PT} = \mathcal{L}_2 + \mathcal{L}_4$
- $\implies \text{ use } U = (\sigma + i \vec{\pi} \cdot \vec{\tau}) / f_{\pi} \,, \; \sigma \equiv \sqrt{f_{\pi}^2 \vec{\pi}^2} \,, \text{ and expand } \mathcal{L}_{\chi PT} \text{ to order } \pi^4, (\partial \pi)^4 \text{:}$

$$\mathcal{L} = rac{1}{2} \, (\partial_{\mu} ec{\pi})^2 - rac{1}{2} \, m_{\pi}^2 ec{\pi}^2 + C_1 \, (ec{\pi}^2)^2 + C_2 \, (ec{\pi} \cdot \partial_{\mu} ec{\pi})^2 + C_3 \, (\partial_{\mu} ec{\pi})^2 (\partial_{
u} ec{\pi})^2 + C_4 \, [(\partial_{\mu} ec{\pi}) \cdot \partial_{
u} ec{\pi}]^2$$

Similarly, in the extended linear sigma model, integrate out all fields except pions, match coefficients: F. Divotgey, F. Giacosa, DHR, in preparation

	$\chi \mathrm{PT}$	eLSM (tree-level!)
C_1	$-M^2/(8f_\pi^2)=-0.279\pm 1.941$	-0.345 ± 69.093
$C_2 \; [{ m MeV}]^{-2}$	$1/(2f_\pi^2) = (5.882 \pm 0.587) \cdot 10^{-5}$	$(5.385 \pm 8.20) \cdot 10^{-5}$
$C_3 \; [{ m MeV}]^{-4}$	$\ell_1/f_\pi^4 = (-5.606 \pm 1.429) \cdot 10^{-11}$	$(-9.303 \pm 5.114) \cdot 10^{-11}$
$C_4 \; [{ m MeV}]^{-4}$	$\ell_2/f_\pi^4 = (2.517 \pm 0.651) \cdot 10^{-11}$	$(9.449 \pm 5.078) \cdot 10^{-11}$

 $\chi {
m PT}: \, m_\pi^2 = M^2 (1 + 2 \ell_3 M^2 / f_\pi^2)$

eLSM: results for C_3 , C_4 for $g_3 = g_4 = g_5 = g_6 = 0$; all errors for C_i still correlated

Incorporating the scalar glueball (I)

Another confirmation of the (predominantly) $\bar{q}q$ assignment for the heavy scalar mesons: \implies coupling to the glueball/dilaton field!

- $N_f = 2$: S. Janowski, D. Parganlija, F. Giacosa, DHR, PRD 84 (2011) 054007
- $N_f = 3$: S. Janowski, F. Giacosa, DHR, PRD 90 (2014) 11, 114005
 - dilatation symmetry \implies dynamical generation of tree-level meson mass parameters through glueball field $G: m^2 \rightarrow m^2 \left(\frac{G}{G_0}\right)^2, \quad m_1^2 \rightarrow m_1^2 \left(\frac{G}{G_0}\right)^2$
 - add glueball Lagrangian:

 $\implies \mathcal{L}_M \longrightarrow \mathcal{L}_M + \mathcal{L}_G$

$$\mathcal{L}_{G}=rac{1}{2}\left(\partial_{\mu}G
ight)^{2}-rac{1}{4}rac{m_{G}^{2}}{\Lambda^{2}}G^{4}\left(\ln\left|rac{G}{\Lambda}
ight|-rac{1}{4}
ight)$$

 $\Lambda \sim {
m gluon \ condensate} \ \langle G^a_{\mu
u} G^{\mu
u}_a
angle$

 $\begin{array}{l} \bullet \text{ shift } \sigma_N, \sigma_S, \text{ and } G \text{ by their v.e.v.'s, } \sigma_{N,S} \to \sigma_{N,S} + \phi_{N,S}, \ G \to G + G_0 \\ \Rightarrow \text{ v.e.v. } G_0 \text{ given by } - \frac{m^2 \Lambda^2}{m_G^2} \left(\phi_N^2 + \phi_S^2 \right) = G_0^4 \ln \left| \frac{G_0}{\Lambda} \right| \\ \Rightarrow \text{ glueball mass given by } M_G^2 = \frac{m^2}{G_0^2} \left(\phi_N^2 + \phi_S^2 \right) + m_G^2 \frac{G_0^2}{\Lambda^2} \left(1 + 3 \ln \left| \frac{G_0}{\Lambda} \right| \right) \\ \Rightarrow \text{ diagonalize mass matrix } M \equiv \begin{pmatrix} m_{\sigma_N}^2 & 2 \lambda_1 \phi_N \phi_S & 2 m^2 \phi_N G_0^{-1} \\ 2 \lambda_1 \phi_N \phi_S & m_{\sigma_S}^2 & 2 m^2 \phi_S G_0^{-1} \\ 2 m^2 \phi_N G_0^{-1} & 2 m^2 \phi_S G_0^{-1} & M_G^2 \end{pmatrix}$

Incorporating the scalar glueball (II)

$\implies \chi^2$ fit of Λ , λ_1 , h_1 , m_G , ϵ_S to the following experimental quantities:

Quantity	Our Value [MeV]	Experiment [MeV]	
$M_{f_0(1370)}$	1444	1350 ± 150	
$M_{f_0(1500)}$	1534	1505 ± 6	
$M_{f_0(1710)}$	1750	1720 ± 6	
$f_0(1370) o \pi\pi$	423.6	325 ± 100	
$f_0(1500) o \pi\pi$	39.2	38.04 ± 4.95	
$f_0(1500) o Kar{K}$	9.1	9.37 ± 1.69	
$f_0(1710) o \pi\pi$	28.3	29.3 ± 6.5	
$f_0(1710) ightarrow Kar{K}$	73.4	71.4 ± 29.1	

$$\chi^2/\mathrm{d.o.f.}\simeq 0.35$$

$$\implies O(3) - \text{mixing matrix } O \equiv \begin{pmatrix} -0.91 & 0.24 & -0.33 \\ 0.30 & 0.94 & -0.17 \\ -0.27 & 0.26 & 0.93 \end{pmatrix}$$
$$\frac{f_0(1370): 83\% \sigma_N \quad 6\% \sigma_S \quad 11\% G}{f_0(1500): 9\% \sigma_N \quad 88\% \sigma_S \quad 3\% G}$$
$$\frac{f_0(1500): 8\% \sigma_N \quad 6\% \sigma_S \quad 3\% G}{f_0(1710): 8\% \sigma_N \quad 6\% \sigma_S \quad 86\% G}$$

Note: demanding dilatation symmetry of full effective model

- \implies analyticity prohibits operators with naive scaling dimension higher than 4 in Φ , \mathcal{L}^{μ} , \mathcal{R}^{μ} (would require inverse powers of dilaton field)
- \implies effective model is complete!

The low-lying scalars

Can the low-lying scalars be "dynamically generated"?

⇒ look for zeros of $\Delta^{-1}(s) = s - m_0^2 - \Pi(s)$, where $\Pi(s)$ is 1-loop self-energy N.A. Törnqvist, M. Roos, PRL 76 (1996) 1575 M. Boglione, M.R. Pennington, PRD 65 (2002) 114010

 \Rightarrow study toy model inspired by extended linear sigma model

 \implies dynamical generation of $a_0(980)$, $a_0(1450)$ with "seed state", $m_0 = 1.2 \text{ GeV}$ T. Wolkanowski, F. Giacosa, DHR, in preparation

Extension to $N_f = 4$

Fit of 3(!) additional parameters from the charm sector:

Observable	Our Value [MeV]	Exp. Value [MeV]		
$m_{D_{s1}}$	2500.54	2535.12 ± 0.13		
$m_{D_s^*}$	2188.33	2112.3 ± 0.5		
m_{D^*}	2154.58	2010.28 ± 0.13		
$m_{D^{*0}}$	2154.58	2006.98 ± 0.15		
m_{D_1}	2447.92	2421.3 ± 0.6		
$m_{\chi_{c1}}$	3282.32	3510.66 ± 0.07		
$m_{\chi_{c0}}$	3160.21	3414.75 ± 0.31		
$m_{J/\psi}$	2911.3	3096.916 ± 0.011		
m_{D_0}	1882.28	1864.86 ± 0.13		
m_{η_c}	2490.55	2981 ± 1.1		
$m_{D_0^*}$	2416.08	$2403\pm14\pm35$		
m_D	1882.28	1869.62 ± 0.15		
$m_{D^*_{s0}}$	$2470.19 2317.8 \pm 0.$			
m_{D_s}	1900.39	1968.49 ± 0.32		
$m_{D_0^{*0}}$	2416.08	2318 ± 29		
$\Gamma_{D_1^0 \to \overline{D}^{*0} \pi^0}$	8.889	-		
$\Gamma_{D_1^0 \to D^{*+} \pi^-}$	17.778	seen		
$\Gamma_{D_1^+ o D^{*0} \pi^+}$	17.778	-		
$\Gamma_{D_1^+ \to D^{*+} \pi^0}$	8.88	-		
$\Gamma_{D^{*0} \to D^0 \pi^0}$	0.0295	$<\!\!1.29$		
$\Gamma_{D^{*0} \to D\pi}$	0.09136	$<\!2.1$		
$\Gamma_{D^{*0} \rightarrow D^+ \pi^-}$	0.061	-		
$\Gamma_{D^{*+} \rightarrow D^{+} \pi^{0}}$	28.1447	29.5 ± 8		
$\Gamma_{D^{*+} \rightarrow D^0 \pi^+}$	57.726	65 ± 17		
$\Gamma_{D_0^{*+} \to D^0 \pi^+}$	1.467	seen		
$\Gamma_{D_0^{*+} \to D^+ \pi^0}$	0.733	-		
$\Gamma_{D_0^{*0} \to D^+ \pi^-}$	4.159	seen		
$\Gamma_{D_0^{*^0} \to D^0 \pi^0}$	2.079 -			
$\Gamma_{D^0_1 \to \overline{D}^0 \pi^+ \pi^-}$	0.399 seen			
$\Gamma_{D_1 \to D \pi \pi}$	0.608 -			

Decay Channel	Our Value [MeV]	Exp. Value [MeV]
$\Gamma_{\chi_{c0} o \overline{K}_0^* K_0^*}$	0.058	0.010
$\Gamma_{\chi_{c0} \to K^- K^+}$	0.001	0.063
$\Gamma_{\chi_{c0} o \pi\pi}$	0.083	0.0884
$\Gamma_{\chi_{c0} ightarrow a_0a_0}$	0.080	-
$\Gamma_{\chi_{c0} o k_1^0 K_1^0}$	0.003	-
$\Gamma_{\chi_{c0} \to \overline{K}^{*0} K^{*0}}$	0.0167	0.01768
$\Gamma_{\chi_{c0} o \eta\eta}$	0.37	0.37
$\Gamma_{\chi_{c0} o \eta' \eta'}$	14.09	0.021
$\Gamma_{\chi_{c0} ightarrow\eta\eta^{\prime}}$	4.839	$<\!0.0025$
$\Gamma_{\chi_{c0} o ww}$	0.031	0.019
$\Gamma_{\chi_{c0} o k_1^+ K^-}$	0.0669	0.066
$\Gamma_{\chi_{c0} o K^* K_0^*}$	0.00006	-
$\Gamma_{\chi_{c0} o ho_0 ho_0}$	0.01606	-
$\Gamma_{\chi_{c0} ightarrow\sigma_1\sigma_1}$	0.032	< 0.0029
$\Gamma_{\chi_{c0} ightarrow K_0^*K\eta}$	2.66	-
$\Gamma_{\chi_{c0} o K_0^* K \eta'}$	6.47	-
$\Gamma_{\chi_{c0} ightarrow\sigma_1\eta\eta}$	0.719	-
$\Gamma_{\chi_{c0} ightarrow \sigma_2\eta\eta}$	0.693	-
$\Gamma_{\chi_{c0} ightarrow\sigma_1\eta'\eta'}$	0.911	-
$\Gamma_{\chi_{c0} ightarrow\sigma_1\eta\eta^\prime}$	1.747	-
$\Gamma_{\chi_{c0} ightarrow\sigma_2\eta\eta^\prime}$	0.8116	-
$\Gamma_{\chi_{c0}\to\sigma_2n'n'}$	0.4148	-

see W.I. Eshraim, F. Giacosa, DHR, arXiv:1405.5861[hep-ph]

Electroweak interactions

A. Habersetzer, F. Giacosa, DHR, in preparation $\partial^\mu \Phi \longrightarrow D^\mu \Phi \equiv \partial^\mu \Phi - i \, e \, A^\mu \left[T_3, \Phi ight] - i \, g \cos heta_C \left(W_1^\mu T_1 + W_2^\mu T_2 ight) \Phi$ $-i q \cos \theta_W \left(Z^\mu T_3 \Phi + \tan^2 \theta_W \Phi T_3 Z^\mu \right)$ $\mathcal{L}_0^{\mu u} \longrightarrow \mathcal{L}^{\mu u} \equiv \partial^\mu \mathcal{L}^ u - i\, e\, A^\mu[T_3, \mathcal{L}^ u] - i\, g[W_1^\mu T_1 + W_2^\mu T_2, \mathcal{L}^ u] - ig\cos heta_W Z^\mu[T_3, \mathcal{L}^ u]$ $-\partial^{ u} \mathcal{L}^{\mu} + i \, e \, A^{ u}[T_3, \mathcal{L}^{\mu}] + i \, g[W_1^{ u} T_1 + W_2^{ u} T_2, \mathcal{L}^{\mu}] + i g \cos heta_W Z^{ u}[T_3, \mathcal{L}^{\mu}]$ $R_0^{\mu u} \longrightarrow \mathcal{R}^{\mu u} \equiv \partial^\mu \mathcal{R}^ u - i \, e \, A^\mu [T_3, \mathcal{R}^ u] - i g \sin heta_W Z^\mu [T_3, \mathcal{R}^ u]$ $-\partial^{ u}\mathcal{R}^{\mu}+i\,e\,A^{ u}[T_3,\mathcal{R}^{\mu}]+iq\sin heta_WZ^{ u}[T_3,\mathcal{R}^{\mu}]$ $\mathcal{L}_M \longrightarrow \mathcal{L}_M + rac{\delta}{2} g \, \cos heta_C \, \mathrm{Tr}[W_{\mu u} \mathcal{L}^{\mu u}] + rac{\delta}{2} e \, \mathrm{Tr}[B_{\mu u} \mathcal{R}^{\mu u}] + rac{1}{4} \, \mathrm{Tr}[(W^{\mu u})^2 + (B^{\mu u})^2]$ Nv ds Coherent Vector Channel Coherent Axial Vector Channel 0.22331 0.22331 1 5477 1.5477).7581 GeV 0.7581 GeV 0.1481 GeV 0.1481 GeV 1.066 GeV 1.066 GeV 0.53 GeV 0.53 GeV $\overset{W^-}{\longrightarrow} \overset{\rho^-}{\longleftarrow} \overset{\pi^0}{\longleftarrow} + \overset{W^-}{\longrightarrow} \overset{\pi^0}{\longleftarrow}$

cf. M. Urban, M. Buballa, J. Wambach, NPA 697 (2002) 338

Chiral symmetry restoration at nonzero temperature (I)

S. Strüber, DHR, PRD 77 (2008) 085004

2PI effective potential:

$$U_{ ext{eff}}[\phi,G_i] = V(\phi) + rac{1}{2}\sum\limits_i \int_K \left[\ln G_i^{-1}(K) + D_i^{-1}(K) G_i(K) - 1
ight] + V_2[\phi,G_i]$$

 $V(\phi): ext{ classical potential}, D_i(K): ext{ tree-level propagators}, V_2[\phi,G_i]: ext{ sum of 2PI vacuum diagrams}$

Stationarity of the effective potential: $\frac{\partial U_{\text{eff}}}{\partial \phi} = 0$, $\frac{\delta U_{\text{eff}}}{\delta G_i} = 0$ \implies Dyson–Schwinger eqs. for the full propagators:

$$G_i^{-1}(K) = D_i^{-1}(K) + \Pi_i(K) \ , \ \ ext{self-energy:} \ \Pi_i(K) = -2 \, rac{\delta V_2}{\delta G_i(K)}$$

approximations:

- gauged linear sigma model
 - $\implies g_i \equiv g \ , \ i=1,\ldots,6$
- Hartree–Fock approximation:

Chiral symmetry restoration at nonzero temperature (II)

A. Heinz, S. Strüber, F. Giacosa, DHR, PRD 79 (2009) 037502 O(4)-linear sigma model without (axial-)vector mesons but: additional light scalar-isoscalar meson

$$V(arphi,\chi)=rac{\lambda}{4}(arphi^2+ec{\pi}^{\,2}-F^2)^2-arepsilonarphi+rac{1}{2}M_\chi^2\chi^2-g\chi(arphi^2+ec{\pi}^2))$$

$$\implies \mathbf{SSB}: \langle arphi
angle \equiv arphi_0
eq 0,$$

- $\implies ext{ induces condensation of } \chi, \ \langle \chi
 angle \equiv \chi_0
 eq 0$
- \implies mixing of φ and χ fields
- $\implies \text{diagonalize mass matrix} \\ \text{for each } T \text{ in terms of} \\ \text{new fields } S, H$

⇒ 2PI effective potential in Hartree–Fock approximation

Chiral symmetry restoration at nonzero temperature (III)

J. Eser, M. Grahl, DHR, in preparation Effective potential within Functional Renormalization Group (FRG) approach:

$$\partial_k \Gamma_k = rac{1}{2} \operatorname{Tr} \left(rac{\partial_k R_k}{\Gamma_k^{(2)} + R_k}
ight)$$

 $SU(2)_V \times SU(2)_A \times U(1)_V$ symmetry:

 $U(2)_V \times U(2)_A$ symmetry:

explicit symmetry breaking:

Baryons and their chiral partners

Inclusion of baryons and their chiral partners $(N_f = 2)$:

 \implies Mirror assignment: C. DeTar and T. Kunihiro, PRD 39 (1989) 2805

$$\Psi_{1,r} \to U_r \Psi_{1,r} , \quad \Psi_{1,\ell} \to U_\ell \Psi_{1,\ell} , \quad \text{but: } \Psi_{2,r} \to U_\ell \Psi_{2,r} , \quad \Psi_{2,\ell} \to U_r \Psi_{2,\ell}$$

 $\implies \text{ new, chirally invariant mass term:}$

Note: chiral symmetry restoration:

chiral partners become degenerate, but not necessarily massless!

- $\implies m_0$ models contribution from gluon condensate to baryon mass
- \implies allows for stable nuclear matter ground state! (see below)

Vector – baryon interactions

Note: in general $c_1 \neq c_2$

 \implies allows to fit axial coupling constants (see below)!

Scalar – baryon interactions

Yukawa interaction:

$$\mathcal{L}_{SB} = - \hat{oldsymbol{g}}_1 \left(ar{\Psi}_{1,\ell} \, \Phi \, \Psi_{1,r} + ar{\Psi}_{1,r} \, \Phi^\dagger \, \Psi_{1,\ell}
ight) - \hat{oldsymbol{g}}_2 \left(ar{\Psi}_{2,r} \, \Phi \, \Psi_{2,\ell} + ar{\Psi}_{2,\ell} \, \Phi^\dagger \, \Psi_{2,r}
ight)$$

 $N_f = 2$ mass eigenstates:

$$\begin{pmatrix} N\\N^* \end{pmatrix} \equiv \begin{pmatrix} N^+\\N^- \end{pmatrix} = \frac{1}{\sqrt{2\cosh\delta}} \begin{pmatrix} e^{\delta/2} & \gamma_5 e^{-\delta/2}\\\gamma_5 e^{-\delta/2} & -e^{\delta/2} \end{pmatrix} \begin{pmatrix} \Psi_1\\\Psi_2 \end{pmatrix}, \quad \sinh\delta = \frac{\phi}{4 m_0} \left(\hat{g}_1 + \hat{g}_2\right)$$
$$m_{\pm} \equiv \sqrt{\frac{m^2}{2} + \frac{\phi^2}{(\hat{g}_1 + \hat{g}_2)^2} + \frac{\phi}{(\hat{g}_1 - \hat{g}_2)^2} + \frac{\phi}{(\hat{g}_1 - \hat{g}_2)} \left(\hat{g}_1 + \hat{g}_2\right) + \frac{\phi}{(\hat{g}_1 - \hat{g}_2)} \left(\hat{g}_1 + \hat{g}_2\right)$$

$$m_{\pm} = \sqrt{m_0^2 + \frac{\phi^2}{16}(\hat{g}_1 + \hat{g}_2)^2 \pm \frac{\phi}{4}(\hat{g}_1 - \hat{g}_2)} \longrightarrow m_0 \quad (\phi \to 0)$$

axial coupling constant:

$$\begin{split} g_A &= + \tanh \delta \left[1 - \frac{c_1 + c_2}{2 g_1} \left(1 - \frac{1}{Z^2} \right) \right] - \frac{c_1 - c_2}{2 g_1} \left(1 - \frac{1}{Z^2} \right) \\ g_A^* &= - \tanh \delta \left[1 - \frac{c_1 + c_2}{2 g_1} \left(1 - \frac{1}{Z^2} \right) \right] - \frac{c_1 - c_2}{2 g_1} \left(1 - \frac{1}{Z^2} \right) \neq -g_A \, ! \end{split}$$

 $\implies \text{ for } c_1 \neq c_2 \text{ compatible with } g_A \simeq 1.26 \text{, } g_A^* \simeq 0 \text{!}$ T.T. Takahashi, T. Kunihiro, PRD 78 (2008) 011503 T. Maurer, T. Burch, L.Ya. Glozman, C.B. Lang, D. Mohler, A. Schäfer, arXiv:1202.2834[hep-lat] Vacuum phenomenology: The chiral partner of the nucleon (I)

 $egin{aligned} & ext{Baryon sector } (N_f=2) \colon & ext{S. Gallas, F. Giacosa, DHR, PRD 82 (2010) 014004} \ & ext{Determine } m_0 \,, \, c_1 \,, \, c_2 \,, \, \hat{g}_1 \,, \, \hat{g}_2 \ & ext{ through } \chi^2 \ & ext{fit to} \ & M_N \,, \, M_{N^*} \,, \, g_A = 1.267 \pm 0.004 \,, \, g_A^* \,, \, \Gamma(N^* \to N\pi) \end{aligned}$

(i) Scenario A: $N = N(940), N^* = N(1535)$ $\implies g_A^* = 0.2 \pm 0.3$ T.T. Takahashi, T. Kunihiro, PRD 78 (2008) 011503 $\Gamma(N^* \to N\pi) = (67.5 \pm 23.6)$ MeV (ii) Scenario B: $N = N(940), N^* = N(1650)$ $\implies g_A^* = 0.55 \pm 0.2$ T.T. Takahashi, T. Kunihiro, PRD 78 (2008) 011503 $\Gamma(N^* \to N\pi) = (128 \pm 44)$ MeV

Test validity of the two scenarios through comparison to:

- πN scattering lengths
- decay width $\Gamma(N^* \to N\eta)$

Vacuum phenomenology: The chiral partner of the nucleon (II)

$\pi N ext{ scattering lengths } a_0^{(\pm)}$:

Vacuum phenomenology: The chiral partner of the nucleon (III)

- $\implies \text{But then: what is the chiral partner of } N(1535)?$ Remember L.Ya. Glozman, PRL 99 (2007) 191602:
 Heavy chiral partners are closer in mass than lighter ones
- \implies Signal of chiral symmetry restoration in the QCD mass spectrum
- \implies Could the partner of N(1535) be N(1440)?
- \implies Study extension to $N_f = 3$ with 4 baryon multiplets!
 - L. Olbrich, M. Zetenyi, F. Giacosa, DHR, in preparation

Extension to $N_f = 3$ and four baryon multiplets (I)

L. Olbrich, M. Zetenyi, F. Giacosa, DHR, in preparation

Assume baryons to be q[qq] composites $\implies B \in (N_f, N_f^*)$:

$$B=egin{pmatrix}rac{\Lambda}{\sqrt{6}}+rac{\Sigma^0}{\sqrt{2}}&\Sigma^+&p\ \Sigma^-&rac{\Lambda}{\sqrt{6}}-rac{\Sigma^0}{\sqrt{2}}&n\ \Xi^-&\Xi^0&-rac{2\Lambda}{\sqrt{6}}\end{pmatrix}$$

Introduce matrix-valued fields N_1 , N_2 , M_1 , M_2 with definite behavior under chiral transformations:

$$\begin{split} N_{1R} &\longrightarrow U_R N_{1R} U_R^{\dagger}, \quad N_{1L} \longrightarrow U_L N_{1L} U_R^{\dagger}, \quad N_{2R} \longrightarrow U_R N_{2R} U_L^{\dagger}, \quad N_{2L} \longrightarrow U_L N_{2L} U_L^{\dagger}, \\ M_{1R} &\longrightarrow U_L M_{1R} U_R^{\dagger}, \quad M_{1L} \longrightarrow U_R M_{1L} U_R^{\dagger}, \quad M_{2R} \longrightarrow U_L M_{2R} U_L^{\dagger}, \quad M_{2L} \longrightarrow U_R M_{2L} U_L^{\dagger}. \end{split}$$

Form linear combinations with definite positive/negative parity:

$$B_N = rac{1}{\sqrt{2}} \left(N_1 - N_2
ight) \;, \;\; B_{N\star} = rac{1}{\sqrt{2}} \left(N_1 + N_2
ight) \;, \;\; B_M = rac{1}{\sqrt{2}} \left(M_1 - M_2
ight) \;, \;\; B_{M\star} = rac{1}{\sqrt{2}} \left(M_1 + M_2
ight) \;.$$

Assignment to physical particles (zero-mixing limit):

$$\begin{split} B_N : \ \left\{ N(939), \, \Lambda(1116), \, \Sigma(1193), \, \Xi(1338) \right\}, \quad B_M : \left\{ N(1440), \, \Lambda(1600), \, \Sigma(1620), \, \Xi(1690) \right\}, \\ B_{N\star} : \left\{ N(1535), \, \Lambda(1670), \, \Sigma(1620), \, \Xi(?) \right\}, \qquad B_{M\star} : \left\{ N(1650), \, \Lambda(1800), \, \Sigma(1750), \, \Xi(?) \right\}. \end{split}$$

- \implies reduction to $N_f = 2$: N(939), N(1440), N(1535), N(1650)
- $\implies \chi^2$ fit of 10 parameters to 13 experimental quantities:

	our results	experiment/lattice
g^N_A	1.2669	1.267 ± 0.0025
$g_A^{N_{1440}}$	0.77	1.2 ± 0.2
$g_A^{N_{1535}}$	1.08	0.2 ± 0.3
$g_A^{N_{1650}}$	0.98	0.55 ± 0.2

	our results [GeV]	experiment [GeV]
m_N	0.93892	0.9389 ± 0.001
$m_{N_{1440}}$	1.437	1.43 ± 0.0715
$m_{N_{1535}}$	1.557	1.53 ± 0.0765
$m_{N_{1650}}$	1.667	1.65 ± 0.0825
$\Gamma_{N_{1440} ightarrow N\pi}$	0.186	0.195 ± 0.087
$\Gamma_{N_{1535} ightarrow N\pi}$	0.0730	0.0675 ± 0.01875
$\Gamma_{N_{1535} ightarrow N\eta}$	0.0066	0.063 ± 0.0183
$\Gamma_{N_{1650} ightarrow N\pi}$	0.1063	0.105 ± 0.0366
$\Gamma_{N_{1650} ightarrow N\eta}$	0.0137	$0.015~\pm~0.008$

Extension to $N_f = 3$ and four baryon multiplets (III)

Mixing matrix:

$$\begin{pmatrix} N_{939} \\ \gamma^5 N_{1535} \\ N_{1440} \\ \gamma^5 N_{1650} \end{pmatrix} = \begin{pmatrix} -0.968713 & -0.0111544 & 0.0542053 & -0.241936 \\ 0.0630544 & 0.944765 & 0.201148 & -0.250961 \\ -0.0537658 & 0.208024 & -0.976557 & -0.0131079 \\ -0.233942 & 0.253022 & 0.0541986 & 0.937184 \end{pmatrix} \begin{pmatrix} \Psi_N \\ \gamma^5 \Psi_{N*} \\ \Psi_M \\ \gamma^5 \Psi_{M*} \end{pmatrix}$$

 \implies Chiral partners: $N(939) \longleftrightarrow N(1650)$, $N(1440) \longleftrightarrow N(1535)$

Exclusive hadro-production in pp

K. Teilab, F. Giacosa, DHR, in preparation preliminary!

Born: p only, Born: incl. N*, K-matrix unitarized, data: SPES III, PINOT, COSY-TOF, COSY-11

Nuclear matter saturation (I)

D. Zschiesche, L. Tolos, J. Schaffner-Bielich, R.D. Pisarski, PRC 75 (2007) 055202 studied cold nuclear matter within the mirror assignment used effective potential in mean-field approximation:

$$U_{ ext{eff}}(\sigma,\omega_0) = \sum_{i=\pm} rac{d_i}{(2\pi)^3} \int_0^{k_{F,i}} \mathrm{d}^3 ec{k} \; [E_i^*(k) - \mu_i^*] + rac{1}{2} \, oldsymbol{m}^2 \, \sigma^2 + rac{1}{4} \, oldsymbol{\lambda} \, \sigma^4 - h \sigma - rac{1}{2} \, oldsymbol{m}_1^2 \, \omega_0^2 - oldsymbol{g}_4 \, \omega_0^4$$

 $egin{aligned} & d_i & ext{internal degrees of freedom of } N, N^* \ & k_{F,i} = \sqrt{\mu_i^*{}^2 - m_i^2} & ext{Fermi momentum} \ & k_{F,i} = \sqrt{\mu_i^*{}^2 - m_i^2} & ext{single-particle energy} \ & \mu_i^* = \mu_i - g_\omega \, \omega_0 & ext{effective chemical potential} \ & m^2 = rac{1}{2} \left(3m_\pi - m_\sigma^2
ight) \,, \quad \lambda = rac{m_\sigma^2 - m_\pi^2}{2\sigma} \,, \quad h = f_\pi \, m_\pi^2 \,, \ & ext{v.e.v.'s } \phi = \langle \sigma \rangle, \, ar \omega = \langle \omega_0
angle \, ext{determined by} \ & rac{\partial U_{ ext{eff}}(\sigma, \omega_0)}{\partial \sigma} \Big|_{\phi, ar \omega} = rac{\partial U_{ ext{eff}}(\sigma, \omega_0)}{\partial \omega_0} \Big|_{\phi, ar \omega} = 0 \end{aligned}$

(both figs.: $\mu_B = 923 \text{ MeV}, \ g_4 = 0, \ m_- = 1.5 \text{ GeV}$ left: $m_\sigma = 1 \text{ GeV}, \text{ right: } m_\sigma = 400 \text{ MeV})$

Nuclear matter saturation (III)

\exists nuclear matter ground state for:

$m_{-} \; [{ m GeV}]$	$m_0 \; [{ m MeV}]$	$m_{\sigma} \; [{ m MeV}]$	g 4	$m_+(n_0)/m_+$	$m(n_0)/m$	$K \; [{ m MeV}]$
1.5	790	370.63	0	0.84	0.73	510.57
1.5	790	346.59	3.8	0.83	0.72	440.51
1.2	790	318.56	0	0.86	0.79	436.41
1.2	790	302.01	3.8	0.86	0.78	374.75

 \implies scalar meson too light, compressibility too large!

S. Gallas, F. Giacosa, G. Pagliara, NPA 872 (2011) 13

inclusion of tetraquark d.o.f. $\chi: m_0$ dynamically generated, $m_0 = a \, \chi$

 \implies nuclear matter ground state:

$m_{-}~[{ m GeV}]$	$m_0 [{ m MeV}]$	$m_\sigma [{ m GeV}]$	g 4	$m_{\chi} \; [{ m MeV}]$	$K \; [{ m MeV}]$
1.535	500	1.294	0	612	194

Note: fit to vacuum properties requires $m_0 = 460 \pm 130 \text{ MeV}$

Chiral density wave in nuclear matter (I)

A. Heinz, F. Giacosa, DHR, NPA 933 (2015) 34 retain only fields that develop a v.e.v.: σ , $\pi \equiv \pi^3$, ω_μ , χ $\mathcal{L}_{\text{mes}} = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma + \frac{1}{2} \partial_\mu \pi \partial^\mu \pi + \frac{1}{2} m^2 (\sigma^2 + \pi^2) - \frac{\lambda}{4} (\sigma^2 + \pi^2)^2 + \varepsilon \sigma$ $- \frac{1}{4} (\partial_\mu \omega_\nu - \partial_\nu \omega_\mu)^2 + \frac{1}{2} m_\omega^2 \omega_\mu^2 + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \frac{1}{2} m_\chi^2 \chi^2 + g \chi (\sigma^2 + \pi^2)$ where $m_\sigma = 1295 \text{ MeV}$, $m_\omega = 782 \text{ MeV}$, $m_\chi = 611 \text{ MeV}$ $\mathcal{L}_{\text{bar}} = \overline{\Psi}_1 i \gamma_\mu \partial^\mu \Psi_1 + \overline{\Psi}_2 i \gamma_\mu \partial^\mu \Psi_2 - \frac{\hat{g}_1}{2} \overline{\Psi}_1 (\sigma + i \gamma_5 \tau^3 \pi) \Psi_1 - \frac{\hat{g}_2}{2} \overline{\Psi}_2 (\sigma - i \gamma_5 \tau^3 \pi) \Psi_2$ $- g_\omega \overline{\Psi}_1 i \gamma_\mu \omega^\mu \Psi_1 - g_\omega \overline{\Psi}_2 i \gamma_\mu \omega^\mu \Psi_2 - a \chi (\overline{\Psi}_2 \gamma_5 \Psi_1 - \overline{\Psi}_1 \gamma_5 \Psi_2)$ Ansatz for chiral density wave: $\langle \sigma \rangle = \phi \cos(2fx)$, $\langle \pi \rangle = \phi \sin(2fx)$

Ansatz for chiral density wave: $\langle \sigma \rangle = \phi \cos(2fx)$, $\langle \pi \rangle = \phi \sin(2fx)$ \implies coordinate dep. in \mathcal{L}_{bar} can be transformed into momentum dep.:

 $\Psi_1
ightarrow \exp[-i\gamma_5 au_3 fx]\Psi_1\,, \ \ \Psi_2
ightarrow \exp[+i\gamma_5 au_3 fx]\Psi_2$

 \implies effective potential:

where $\mu^*=\mu-g_\omegaar{\omega}_0\,,~~E_k(p)=\sqrt{p^2+ar{m}_k(p_x)^2}$

Chiral density wave in nuclear matter (II)

ground state is obtained by minimizing U_{eff} with respect to meson mean fields:

$$0 \stackrel{!}{=} rac{\partial U_{ ext{eff}}}{\partial \phi}, \, 0 \stackrel{!}{=} rac{\partial U_{ ext{eff}}}{\partial ar{\chi}}, \, 0 \stackrel{!}{=} rac{\partial U_{ ext{eff}}}{\partial ar{\omega}_0}, \, 0 \stackrel{!}{=} rac{\partial U_{ ext{eff}}}{\partial ar{f}}$$

 \implies three distinct minima:

1. the vacuum at $\phi = 154.4$ MeV (global minimum)

- 2. the nuclear matter ground state at $\phi = 149.5$ MeV (global minimum, degenerate with 1.) \implies first-order phase transition between 1. and 2.!
- 3. an inhomogeneous phase with $f \neq 0$ at $\phi = 38.3$ MeV (local minimum)

first-order transition to chiral density wave phase at $\mu=973~{\rm MeV}$

 \iff mixed phase between $ho\simeq(2.4-10.4)
ho_0$

Extension to higher-dimensional modulations (I)

Are there other inhomogeneous phases?

Possibly with arbitrary, 3-dimensional modulations of the order parameter?

- \implies compute one-loop effective potential numerically on (Euclidean) space-time lattice!
- M. Wagner, PRD 76 (2007) 076002
- A. Heinz, F. Giacosa, M. Wagner, DHR, in preparation
- \implies no Ansatz for the spatial dependence of the order parameter ! method finds that $\phi(\vec{r})$ which minimizes the effective potential !

Extension to higher-dimensional modulations (III)

Test case II: 3+1-dim. NJL model with 1-dim. modulation of order parameter

S. Carignano, M. Buballa, arXiv:1111.4400 [hep-ph]

Conclusions

- I. Linear σ model with $U(N_f)_r \times U(N_f)_\ell$ symmetry with scalar and vector mesons, baryons and their chiral partners
- II. Vacuum phenomenology:
 - 1. Excellent fit of mesonic vacuum properties for $N_f = 3$
 - 2. Correct low-energy limit of QCD
- 3. The scalar meson puzzle: evidence for dominant four-quark component for the light scalar mesons $f_0(500)$, $f_0(980)$, glueball is most likely (predominantly) $f_0(1710)$
- 4. Chiral partners: $N(939) \leftrightarrow N(1650)$, $N(1440) \leftrightarrow N(1535)$?
- III. Nonzero temperature and density:
- 1. Chiral partners: become degenerate in mass above T_c

 $(f_0(1370) ext{ becomes lighter than } f_0(500) ext{ at } T_{
m sw} < T_c)$

- 2. Order of chiral transition: correctly reproduced within FRG
- 3. Nuclear matter ground state: correctly described by chiral effective model with mirror assignment for chiral partner of N
- 4. Chiral density wave in nuclear matter matter