Some results on hyperons in neutron stars and the parity-doublet model

relatively easy to generate heavy stars with nucleonic EOS M_{max} ~ 2.8 M_{\odot} (NL3) \sim 2.2 M_{\odot} (APR)

Causal limit beyond ρ_c - $\epsilon \sim p + const$

Rhoades, Ruffini (1974): $M_{max} < 3.2 M_{\odot}$

Example of Brückner-HF calculation

Includes 3-body forces

hyperons can reduce maximum mass significantly

Tolman-Oppenheimer-Volkov equations static spherical star - input $\epsilon(p)$

Vidaña et. al., EPL 94 11002

very good agreement with nuclear binding energies refit of parameters to nuclear data – T. Schürhoff

Dexheimer, SWS ApJ 683, 943 (2008)

changing masses with degrees of freedom

hadronic model based on non-linear realization of chiral symmetry

degrees of freedom **SU(3) multiplets:**

baryons (n,Λ, Σ, Ξ) scalars $(\sigma, \zeta, \delta^0)$ vectors (ω, ρ, ϕ) , pseudoscalars, glueball field χ

A) SU(3) interaction

 $\sim \ Tr \ [\ \overline{B}, M \]_{\pm} \ B \quad , \ (\ Tr \ \overline{B} \ B \) \ Tr \ M$

B) meson interactions

$$\sigma \sim \langle \overline{u} \, u + \overline{d} \, d \rangle \qquad \zeta \sim \langle \overline{s} \, \overline{s} \rangle \qquad \delta^0 \sim \langle \overline{u} \, u - \overline{d} \, d \rangle$$
$$\sim V(M) \qquad \langle \sigma \rangle = \sigma_0 \neq 0 \qquad \langle \zeta \rangle = \zeta_0 \neq 0$$

C) chiral symmetry $m_{\pi} = m_{K} = 0$

explicit breaking ~ Tr [$c \sigma$] (~ $m_q \overline{q} q$)

light pseudoscalars, breaking of SU(3)

Nuclear Matter and Nuclei

binding energy $E/A \sim -16 \text{ MeV}$ saturation $(\rho_B)_0 \sim .16/\text{fm}^3$ compressibility $\sim 221 \text{ MeV}$ asymmetry energy $\sim 32.6 \text{ MeV}$

parameter fit to known nuclear binding energies and hadron masses

new improved fit χ_{M^*} 2d calculation of all even-even nuclei relativistic nuclear structure models error in energy $\epsilon (A > 50) \sim 0.17 \% (\chi_M : 0.21\%, NL3: 0.25\%)$ $\epsilon (A > 100) \sim 0.12 \% (\chi_M : 0.14\%, NL3: 0.16\%)$

+ correct binding energies of hypernuclei

SWS, Phys. Rev. C66, 064310 + in preparation **Λ (uds)** single-particle energies

Quantum Monte Carlo based on Argonne Potential

playing around with 3B forces

Lonardoni et al, PRL 114, 092301 (2015)

strong Lambda NN force – no hyperons in star below 2 M_{solar} favored by Lambda separation energies of medium-light nuclei

Extension of the parity model to SU(3)

Baryon SU(3) multiplet + parity doublets

Similar approach, SU(3)-invariant potential for scalar fields

single particle energies
$$E_{\pm} = \sqrt{(g_1 \sigma + g_2 \varsigma)^2 + m_0^2} \pm (g'_1 \sigma + g'_2 \varsigma)$$

simplify investigation – same mass shift for whole octet

Candidates – $\Lambda(1670)$, $\Sigma(1750)$, $\Xi(?)$ overall unclear

Steinheimer, SWS, Stöcker, PRC 84, 045208 Dexheimer, Steinheimer, Negreiros, SWS, PRC 87, 015804

first study - Nemoto et al. PRD 57, 4124 (1998)

Quark condensate for different masses m_{N^*}

First order transition for masses ≥ 1470 MeV, below crossover

Order parameters for chiral symmetry and confinement in $\boldsymbol{\mu}$ and T

except for liquid-gas no first-order transition

results for isospin symmetric matter

Excited quark-hadron matter in the parity-doublet approach

First-order phase transition with low-T critical end point due to chiral parity partners

$$E_{\pm} = \sqrt{\left(g_1 \sigma + g_2 \varsigma\right)^2 + m_0^2} \pm \left(g'_1 \sigma + g'_2 \varsigma\right)$$

Steinheimer, SWS, Stöcker, PRC 84, 045208 Dexheimer, Steinheimer, Negreiros, SWS, PRC 87, 015804

Neutron stars in parity-doublet approach

Particle population in nuclear matter in beta equilibrium with $m_{N^*} = 1400 \text{ MeV}$

particle mix not too exotic for reasonably large densities

some remarks on SU(6)

Classification / mass formulae with constituent quark models

assume flavor and spin independence

SU(6) symmetry $u_{\uparrow\downarrow}, d_{\uparrow\downarrow}, s_{\uparrow\downarrow}$

Baryonic states $[6] \times [6] \times [6] = [56]_{s} + ...$

Rearrange to SU(3) \times SU(2) : [56] = $[10]^{3/2} + [8]^{1/2}$

- decuplet degenerate with the octet

Mass formulae : degenerate + hypercharge + spin

(e.g. bag model - color-magnetic hyperfine splitting)

general linear SU(3)-invariant baryon-meson interaction

$$\mathcal{L}_{BW} = -\sqrt{2}g_8^W (\alpha_W [\bar{B}\mathcal{O}BW]_F + (1 - \alpha_W) [\bar{B}\mathcal{O}BW]_D)$$
$$-g_1^W \frac{1}{\sqrt{3}} \operatorname{Tr}(\bar{B}\mathcal{O}B) \operatorname{Tr} W,$$

 $[\overline{B}\mathcal{O}BW]_F := \operatorname{Tr}(\overline{B}\mathcal{O}WB - \overline{B}\mathcal{O}BW)$ $[\overline{B}\mathcal{O}BW]_D := \operatorname{Tr}(\overline{B}\mathcal{O}WB + \overline{B}\mathcal{O}BW) - \frac{2}{3}\operatorname{Tr}(\overline{B}\mathcal{O}B)\operatorname{Tr} W$

three coupling parameters g_8, g_1, α

Vector mesons (O = γ^{μ} , W = V_µ)

 $g_{N\omega} = 1/3 (1 - 4 \alpha) g_8 - \sqrt{2/3} g_1$ $g_{\Lambda\omega} = 2/3 (1 - \alpha) g_8 - \sqrt{2/3} g_1$ $g_{\Sigma\omega} = 2/3 (-1 + \alpha) g_8 - \sqrt{2/3} g_1$ $g_{\Xi\omega} = 1/3 (1 + 2 \alpha) g_8 - \sqrt{2/3} g_1$ $g_{N\phi} = \sqrt{2} \frac{1}{3} (-1 + 4 \alpha) g_8 - \frac{1}{\sqrt{3}} g_1$ $g_{\Lambda\phi} = \sqrt{2} \frac{2}{3} (-1 + \alpha) g_8 - \frac{1}{\sqrt{3}} g_1$ $g_{\Sigma\phi} = \sqrt{2} \frac{2}{3} (1 - \alpha) g_8 - \frac{1}{\sqrt{3}} g_1$ $g_{\Xi\phi} = \sqrt{2} \frac{1}{3} (-1 - 2 \alpha) g_8 - \frac{1}{\sqrt{3}} g_1$

	lsov	vector:	
$g_{pp} = -g_8$	$g_{\Lambda\rho} = 0$	$g_{\Sigma^+\rho} = -2 \alpha g_8$	$g_{\Xi^0 \rho} = (1 - 2 \alpha) g_8$
universality:	α = 1		
$g_{N\omega} = -g_8 - V(2/3) g_1$		$g_{N\phi} = \sqrt{2} g_8 - 1/\sqrt{3} g_1$	
$g_{\wedge\omega} = -\sqrt{2/3} g_1$		$g_{\wedge \varphi} = -1/$	∕√3 g ₁
$g_{\Sigma\omega} = -\sqrt{2/3}$	3) g ₁	$g_{\Sigma\phi} = -1$	/√3 g ₁
$g_{\Xi\omega} = g_8 - \sqrt{2/3}$	3) g ₁	g _{Ξφ} = -√2 g ₈ - 1	L/√3 g ₁
SU(6) limit:	α = 1	$g_1/g_8 = \sqrt{6}$	
$g_{N\omega} = -3 g_8$		$g_{N\phi} = 0$	
$g_{\Lambda\omega} = -2 g_8$		$g_{\wedge \varphi} = - \sqrt{2} g_8$	simple quark counting
$g_{\Sigma\omega} = -2 g_8$		$g_{\Sigma\phi} = - \sqrt{2} g_8$	
$g_{\Xi\omega} = -1 g_8$		g _{Ξφ} = - 2 √2 g ₈	

Nijmegen ESC08 values : Rijken et al., PTP Suppl. 185, 14 (2010)

D-type coupling = 0 but octet to singlet contribution not the SU(6) value

 $g_8/g_1 \sim 5.13$ compared to 2.45

but – more complicated

adding pomeron/odderon (singlet, short-range)

	ктμ
experimental sources	from

K + p → H + π, H scattering from the 60s plus Σ⁺p scattering data at KEK

Summary – HN sparse data, HH nothing hyper stars possible, but with few hyperons (repulsion) more hyperons -> escape to hyper stars probably most important ΞΞ interaction