Hyperons, Neutron Stars and Supernovae

Jürgen Schaffner-Bielich

Institut für Theoretische Physik

SFB-TR Proposal Meeting 2015 GSI, Juli 22, 2015

Bundesministerium für Bildung und Forschung

Outline

- Masses of neutron stars: controlled by three-body force involving hyperons
- Neutron star cooling: fast cooling with hyperons
- Gravitational wave emission from rotating neutron stars: stabilized with nonmesonic weak processes involving hyperons
- Supernova matter: presence of hyperons can trigger the phase transition to quark matter

Masses of Neutron Stars

Impact of hyperons on the maximum mass of neutron stars

(Glendenning and Moszkowski 1991)

- neutron star with nucleons and leptons only: $M \approx 2.3 M_{\odot}$
- substantial decrease of the maximum mass due to hyperons!
- maximum mass for "giant hypernuclei": $M \approx 1.7 M_{\odot}$
- noninteracting hyperons result in a too low mass: $M < 1.4 M_{\odot}$!

Maximum mass and modern many-body approaches

modern many-body calculations (using Nijmegen soft-core YN potential)

- Vidana et al. (2000): $M_{\rm max} = 1.47 M_{\odot}$ (NN and YN interactions), $M_{\rm max} = 1.34 M_{\odot}$ (NN, NY, YY interactions)
- Baldo et al. (2000): $M_{\rm max} = 1.26 M_{\odot}$ (including three-body nucleon interaction)
- **Schulze et al. (2006):** $M_{\rm max} < 1.4 M_{\odot}$
- **D** Japo et al. (2008): $M_{\rm max} < 1.4 M_{\odot}$
- too soft EoS, too low masses!
- missing three-body force for hyperons (YNN, YYN, YYY): neutron stars can not live without it!
- more input needed from hypernuclear physics!

Mass-radius relation with $V_{low k}$ potential

(Djapo, Schäfer, Wambach 2008)

- RG approach with $V_{\text{low k}}$ potential from various models
- presence of hyperons substantially reduces the maximum mass
- in contradiction with pulsar data: $M_{\rm max} < 1.44 M_{\odot}$

Neutron star cooling with hyperons

Cooling processes with neutrinos

modified URCA process (slow):

 $N + p + e^- \rightarrow N + n + \nu_e \qquad N + n \rightarrow N + p + e^- + \bar{\nu}_e$

direct URCA process (fast):

$$p + e^- \rightarrow n + \nu_e \qquad n \rightarrow p + e^- + \bar{\nu}_e$$

can only proceed for $p_F^p + p_F^e \ge p_F^n$! Charge neutrality implies:

$$n_p = n_e \hookrightarrow p_F^p = p_F^e \hookrightarrow 2p_F^p = p_F^n \hookrightarrow n_p/n \ge 1/9$$

nucleon URCA only for large proton fractions, but hyperon URCA process:

$$\Lambda \to p + e^- + \bar{\nu}_e \quad , \quad \Sigma^- \to n + e^- + \bar{\nu}_e \quad , \quad \dots$$

happens immediately when hyperons are present! only suppressed by hyperon pairing gaps!

Basic cooling of neutron stars (Page and Reddy (2006))

slow standard cooling via the modified URCA process versus fast neutrino cooling (emissivities of $\epsilon_{\nu} = 10^n \times T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}$)

- normal neutron matter: N, superfluid neutron matter: SF
- fast cooling due to 'exotic' processes as nucleon direct URCA or kaon condensation

Cooling with hyperons: fast cooling and hyperon gaps

slow cooling for low mass neutron stars

- fast cooling for heavier ones due to direct nucleon URCA
- hyperon cooling suppressed by pairing gaps (left) and unsuppressed (right)
- two-body YY interactions as input needed!
- pairing of Σ hyperons and cooling: Vidana and Tolos (2004)

Gravitational wave emission from rotating neutron stars

R-mode instability for rotating neutron stars

 \checkmark oscillations brings the matter out of β -equilibrium

■ dominating effect to restore equilibrium: weak nonmesonic processes $NN \leftrightarrow \Lambda N$ and $NN \leftrightarrow \Sigma N$

substantial increase of the stability window (blue line)

depends crucially on hyperon superfluidity (dashed lines)

Core-Collapse Supernovae, Neutron Star Merger and Hyperons

Strangeness in Supernova Matter: Hyperons

C. Ishizuka, A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, S. Yamada 2008

- supernova matter for $Y_c = 0.4$ with constant entropy/baryon ratio S/B.
- \blacksquare hyperon fraction at bounce $T \sim 20$ MeV: about 0.1%
- \checkmark thermally produced strangeness, hyperons are in β -equilibrium!

Summary

Hypernuclear physics has a substantial impact on neutron star properties!

- Two-body YN interaction: controls composition and cooling
 hyperons are most likely the first exotic phase to appear in the core
 hyperons can cool neutron stars rapidly (hyperon gaps!)
- Three-body YNN and YYN force: controls the maximum mass \implies low maximum masses below $1.4M_{\odot}$ without three-body force
- Nonmesonic weak nonmesonic reactions with hyperons
 damps the r-mode instability of rotating neutron stars (pulsars) and their gravitational wave emission
- YN potentials control amount of strangeness present supernova matter
 presence of hyperons trigger the phase transition to quark matter