

Hypernuclei and Hyperon-Hyperon Interactions

(Incomplete) Overview on Experimental Status STAR, ALICE, KEK, ...

Scope of the Workshop

Subtopic:

The role of hyperons in the nuclear matter equation of state.

- shed light, both experimentally and theoretically, on hyperon-interactions, which is important to constrain the equation of state for nuclear matter including strange quark degree of freedom
- connection to neutron stars

Recent Hyperon/Strangeness Workshops

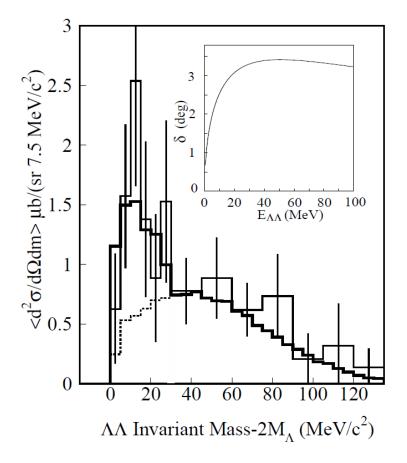
and sources of this overview....

EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC

20-22 July 2015 CERN Europe/Berlin timezone

Joint Institute for Nuclear Research XV International conference **Strangeness in Quark Matter** 6 July - 11 July 2015 Dubna, Russia

Hyperon Interactions



- Hyperon interactions are notoriously difficult to measure because of the short decay length of $< 10 \ cm/GeV/c$.
- Hyperon beams have been provided at CERN-SPS (1991-93) delivering $10^5 \Sigma^-$ per beam pulse at 340 GeV/c to the Omega spectrometer facility.
 - No potential (elastic) scattering at these energies, which would allow to measure phase shifts or scattering length.
- Low energy ΛN interactions (i.e., s-wave scattering) so far only from stopped Kbeams in bubble chambers (<1970), some 100 events, and hypernuclei.
- Obviously no scattering on a hyperon target, i.e., no hyperon-hyperon scattering data.
- Information on hyperon-hyperon interactions from correlations:
 - ΛΛ correlations (HBT, femtoscopy)
 - $(\Lambda\Lambda)_b$ *H*-dibaryon search
 - double hypernuclei, e.g. $^{6}_{\Lambda\Lambda}He$

Hyperons ($\Lambda\Lambda$) Correlations at KEK

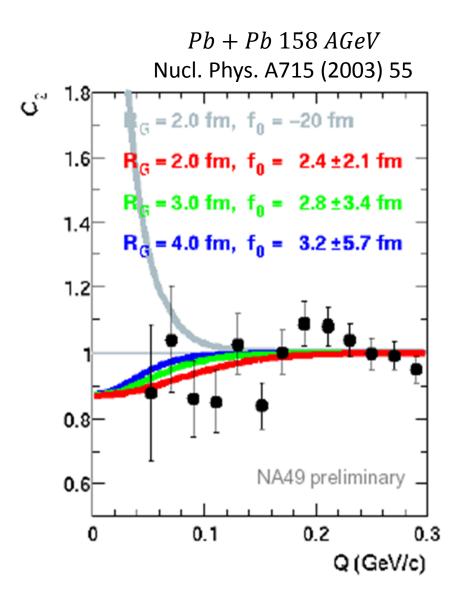
reaction: (*K*⁻, *K*⁺ΛΛ) K. Yoon et al., Int J Mod Phy E19 (2010)2448 K. Yoon et al, Phys. Rev. C 75, 022201(R) (2007)

 $\Lambda\Lambda$ invariant mass spectrum reproduced with FSI

scattering length $a_{\Lambda\Lambda} = -0.10^{+0.45}_{-2.35} \pm 0.04 \ fm$ effective range $r_{\Lambda\Lambda} = 13.90^{>+16.10}_{<-13.30} \pm 9.48 \ fm$

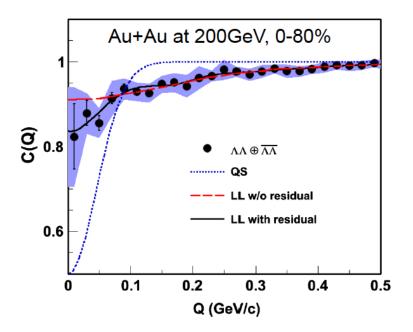
related to phase shift $\,\delta$ via

$$k \cot \delta = -\frac{1}{a_{\Lambda\Lambda}} + \frac{1}{2}r_{\Lambda\Lambda}k^2$$


conjecture:

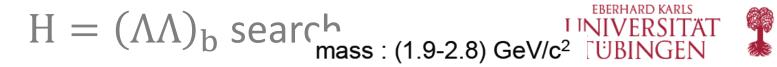
enhancement above combinatorial background due H-dibaryon resonance and/or attaractive FSI

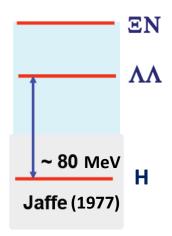
Hyperons ($\Lambda\Lambda$) Correlations at the SPS


NA49

- 3500 $\Lambda\Lambda$ pairs with $Q < 0.3 \frac{GeV}{c}$
- fit done with fixed R_G and λ , scattering length f_0 varied
- tendency for small, positive $f_0 (a_{\Lambda\Lambda}: = -f_0 < 0)$, but inconclusive due to low statistics

Hyperons ($\Lambda\Lambda$) Correlations at RHIC/STAR

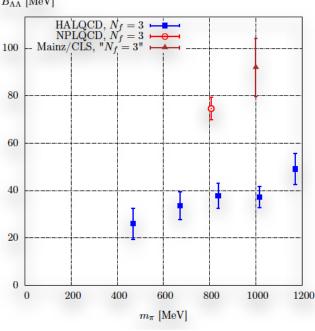

STAR Col. Phys. Rev. Lett. 114, 022301(2015)



- $\sim 8 \times 10^8$ events analyzed
- fit to data with Lednicky-Lyuboshitz model w and w/o residual $\Lambda\Lambda$ interaction:
- $CF(Q = 0) > CF_{QS}(Q = 0) \Rightarrow$ attractive interaction
 - no correction from feed down, i.e. residual correlation (only 45% of $\Lambda's$ are primary)
- scattering length $a_{\Lambda\Lambda} = -1.0 \pm 0.38^{+0.96}_{-0.02} fm$
- effective range $r_{\Lambda\Lambda} = 8.52 \pm 2.56^{+2.09}_{-0.74} fm$
- conclusion on attractive or repulsive potential is model dependent and limited by statistics

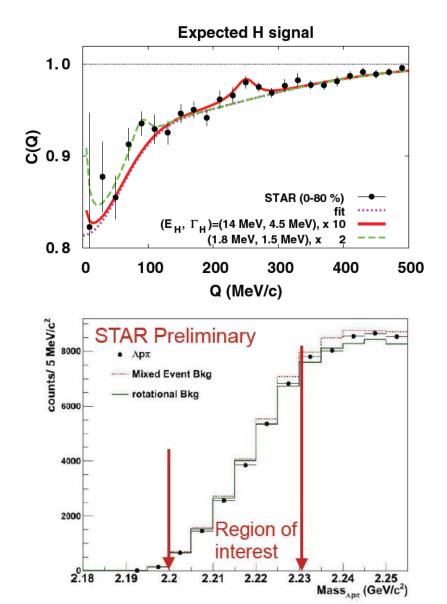
feed down: $\Lambda's$ from $\Sigma^0\Lambda$, $\Sigma^0\Sigma^0$, and $\Xi^-\Xi^-$.

Jinhui Chen @ SQM 2015



bound (*uuddss*)- object below $\Lambda\Lambda$ threshold $m_H = 1.9 - 2.8 \ GeV/c^2$

strong decay of H-dibaryon: visible $\Lambda\Lambda$ as "bump" in correlation function *weak* decay of *H*-dibaryon: visible in invariant mass spectrum $H \to \Lambda + p + \pi$



lattice QCD:

- bound state only at unphysical pion mass ٠
- extrapolation to physical pion masses yield ٠ unbound H

STAR: Di-baryon Search

correlations:

no significant enhancement seen in data

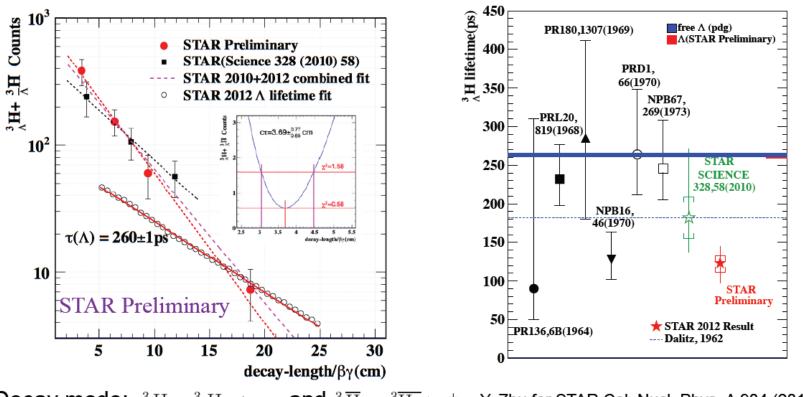
K. Morita et al, Phys. Rev. C 91, 024916 (2015)

original idea:

C. Greiner and B. Müller, Phys. Lett. B, 219 (1989) 199

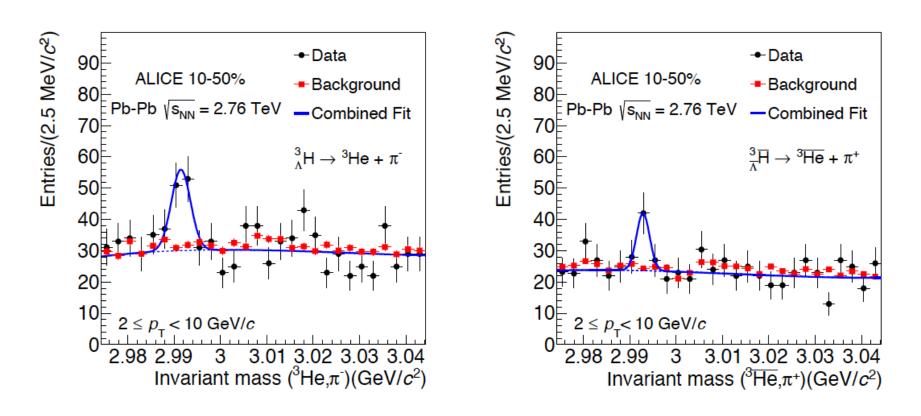
invariant mass:

no visible signal with respect to mixed event or rotational background


N.Shah, STAR coll., Nucl. Phys. A914 (2013) 410

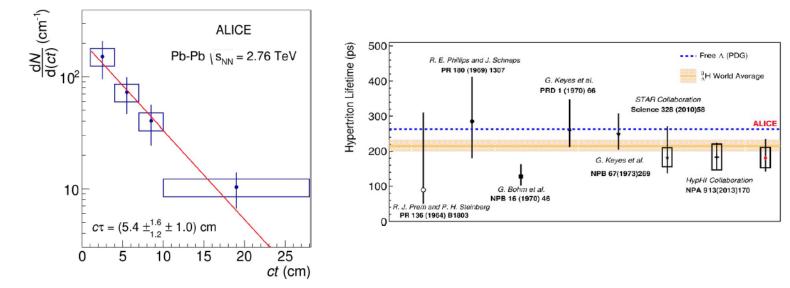
Jinhui Chen @ SQM 2015

STAR: Hyper-Tritons


Decay mode: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ and ${}^{3}_{\overline{\Lambda}}\overline{H} \rightarrow {}^{3}\overline{He} + \pi^{+}$ Y. Zhu for STAR Col. Nucl. Phys. A 904 (2013) 551

- lifetime measurement provides information on the $\Lambda N\,$ interaction strength
- STAR: short lifetime ($\tau = 123^{+26}_{-22} \pm 10 \, ps$) compared with world average and free τ

ALICE: Hyper-Tritons

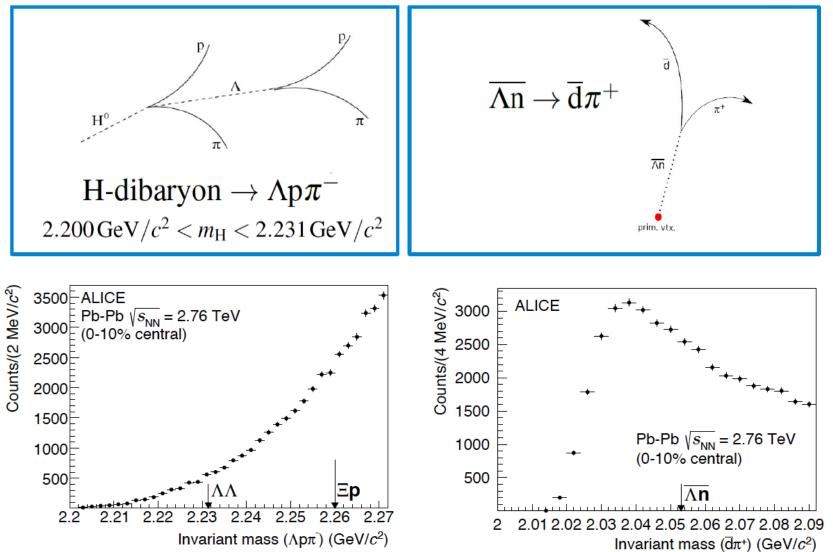


Yields reproduced by thermal models....

ALICE: Hyper-Triton Lifetime

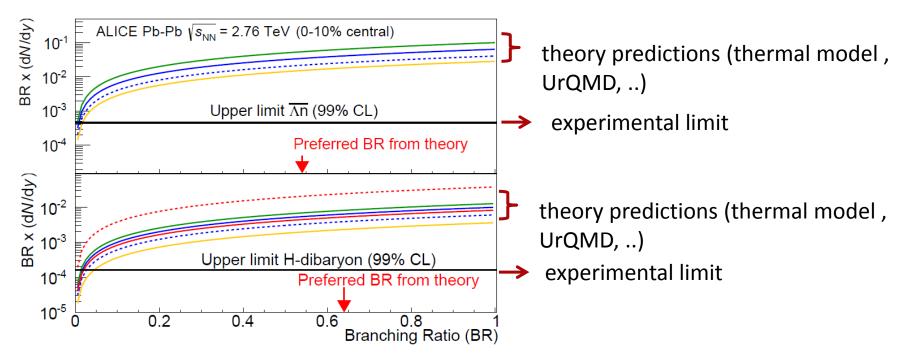
- Measurement of lifetime: anti-hyp. + hyper. sample in 4 intervals
- Exponential fit is performed:

$$c\tau = (5.4^{+1.6}_{-1.2}(\text{stat.}) \pm 1.0(\text{syst.})) \text{ cm}$$


• From ALICE data:

 $\tau = (181^{+54}_{-39}(\text{stat.}) \pm 33(\text{syst.})) \text{ ps}$

- World average: $au = \left(215^{+18}_{-16}\,\mathrm{ps}\right)$
- ALICE result compatible with the computed average


H-dibaryon search at ALICE

H-dibaryon search at ALICE: Limits

- Limits obtained on the dN/dy are more than one order of magnitude below the expectations of particle production models
- Yields for a very loosely bound hypertriton (E_B < 150 keV) agree well with the prediction of the thermal model
 → An (if it exists) is predicted by this model and with a dN/dy = factor 300 bic

 \rightarrow An (if it exists) is predicted by this model and with a dN/dy ~ factor 300 higher that the measured hypertriton yield.

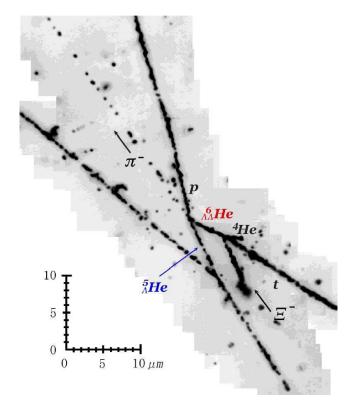
• Similar considerations for the H-dibaryon

Double-strange Hypernuclei

VOLUME 87, NUMBER 21

PHYSICAL REVIEW LETTERS

19 NOVEMBER 2001


Observation of a $\Lambda \Lambda^6$ He Double Hypernucleus

H. Takahashi,^{1,*} J. K. Ahn,^{1,†} H. Akikawa,¹ S. Aoki,² K. Arai,³ S. Y. Bahk,⁴ K. M. Baik,⁵ B. Bassalleck,⁶ J. H. Chung,⁷

Observed **AA** hypernuclei:

1963: $_{\Lambda\Lambda}{}^{10}$ Be (Danysz et al.) 1966: $_{\Lambda\Lambda}{}^{6}$ He (Prowse et al.) 1991: $_{\Lambda\Lambda}{}^{10}$ Be or $_{\Lambda\Lambda}{}^{10}$ Be (KEK-E176) 2001: $_{\Lambda\Lambda}{}^{4}$ H (BNL-E906) 2001: $_{\Lambda\Lambda}{}^{6}$ He (KEK-E373) 2001: $_{\Lambda\Lambda}{}^{10}$ Be (KEK-E373)

$${}^{6}_{\Lambda\Lambda}He \rightarrow \Lambda\Lambda + {}^{4}He, Q = 6.91 MeV (?)$$

Status & Outlook

<u>Status:</u>

- ΛΛ-correlations measured in STAR
 - firm conclusion on interaction potential still limited by statistics
- ALICE measures single light hypernuclei $({}^{3}_{\Lambda}H, {}^{3}_{\overline{\Lambda}}\overline{H})$
- no evidence von H-dibaryon (ALICE, STAR)

Outlook:

- EOS from near-threshold hyperon production (\rightarrow Peter's talk)
- for CBM (\rightarrow Iouri's talk):
 - correlation studies can be extend to $\Lambda \Xi$, $\Lambda \Omega$ (?), $\Xi \Xi$ (?)
 - double hypernuclei "easy"