CBM and the nuclear matter EOS

Peter Senger (GSI)

Outline:

EOS and heavy-ion collisions
EOS of symmetric nuclear matter at ρ < 3 ρ₀
Observables sensitive to EOS at ρ > 3 ρ₀?
The CBM experiments and its performance
Hyperons in Nuclear Matter, GSI, July 22, 2015

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At very high temperature:

- \blacktriangleright N of baryons \approx N of antibaryons Situation similar to early universe
- L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- \succ Precision experiments: ALICE, ATLAS, CMS at LHC, STAR, PHENIX at RHIC

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At high baryon density:

- \blacktriangleright N of baryons >> N of antibaryons Densities like in neutron star cores
- \succ L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- Experiments: BES at RHIC, NA61 at CERN SPS, CBM at FAIR, NICA at JINR

Baryon densities in central Au+Au collisions

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007), V. D. Toneev et al., Eur. Phys. J. C32 (2003) 399

Quark matter in massive neutron stars?

Equation-of-state: Non-local SU(3) NJL with vector coupling

 ρ/ρ_0

The equation-of-state of (symmetric) nuclear matter

Equation of state:

 $P = \delta E/\delta V |_{T=const}$ $V = A/\rho$ $\delta V/ \delta \rho = - A/\rho^{2}$ $P = \rho^{2} \delta(E/A)/\delta \rho |_{T=const}$

T=0: E/A = $1/\rho \int U(\rho)d\rho$ Effective NN-potential: $U(\rho)=\alpha\rho+\beta\rho^{\gamma}$

- $E/A(\rho_o) = -16 \text{ MeV}$
- $\delta(E/A)(\rho_o)/\delta\rho = 0$
- Compressibility: $\kappa = 9\rho^2 \, \delta^2 (E/A) / \, \delta \rho^2$

 κ = 200 MeV: "soft" EOS κ = 380 MeV: "stiff" EOS

The equation-of-state of (symmetric) nuclear matter Observable: Kaon production in Au+Au collisions at 1 AGeV

 $pp \rightarrow K^+\Lambda p$ (E_{thres}= 1.6 GeV)

Probing the nuclear equation-of-state ($\rho = 1 - 3 \rho_0$) by K⁺ meson production in C+C and Au+Au collisions

Idea: K⁺ yield \propto baryon density $\rho \propto$ compressibility κ

The compressibility of (symmetric) nuclear matter

Experiment: C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39 Theory: QMD Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

Au/C ratio: cancellation of systematic errors both in experiment and theory

The compressibility of (symmetric) nuclear matter

Experiment: C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39 Theory: QMD Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

soft equation-of-state: $\kappa \leq 200$ MeV

EOS from the elliptic flow of fragments in Au+Au collisions

W. Reisdorf for the FOPI Collaboration, arXiv:1307.4210

nuclear matter EOS

nuclear matter EOS

EOS from collective flow of protons

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

EOS from collective flow of protons

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

The equation-of-state of symmetric nuclear matter at neutron star core densities

Observable: multistrange hyperon production at (sub)threshold energies

Direct multi-strange hyperon production:

Strangeness Data situation

Strangeness Data situation

Strangeness

Multistrange (anti-)hyperon production in HSD and PHSD transport codes at FAIR energies

I. Vassiliev, E. Bratkovskaya, preliminary results

HSD: Hadronic transport code PHSD:Hadronic transport code with partonic phase ($\epsilon > 1 \text{ GeV/fm}^3$)

Production of (anti-)hyperons in hadronic and partonic matter

Simulations using the AMPT code of C.M. Ko, Texas A&M Univ.

Experimental challenges

Particle yields in central Au+Au 4 A GeV

Experiments exploring dense QCD matter

Simulations

Event generators UrQMD 3.3 Transport code GEANT3, FLUKA Realistic detector geometries, material budget and detector response

Au+Au 8 AGeV 1M central events

Hyperons in CBM

- Au+Au, C+C at 4 energies (4, 6, 8, 10 A GeV)
- Expected reconstructed yields for 4 weeks/energy min. bias Au+Au with 10⁷ beam ions/s (100 kHz events/s):

A GeV	Λ	$\overline{\Lambda}$	Ξ-	Ξ+	Ω-	Ω+
4	8.1·10 ¹⁰	3.0·10 ⁵	6.6·10 ⁷	6.0·10 ⁴	3.6·10⁵	1.2·10 ³
6	1.6.1011	5.0·10 ⁶	3.4·10 ⁸	1.8·10 ⁵	2.4·10 ⁶	1.2·10 ⁴
8	2.1.1011	1.5·10 ⁷	6.6·10 ⁸	3.0·10 ⁵	7.6·10 ⁶	6.0·10 ⁴
10	2.4.1011	3.8·10 ⁷	9.6·10 ⁸	2.0·10 ⁶	1.3·10 ⁷	1.5·10 ⁵

In addition kaons and resonances (K*,Λ*,Σ*,Ξ*)

Conclusions

CBM will provide data on:

- strangeness production
- collective flow of identified particles
- > dilepton production

with unprecedented statistics in heavy-ion collisions at beam energies from 3 - 14 A GeV (Au beam up to 11 A GeV)

Questions

- Are the yield, flow, spectra of multi-strange (anti-) hyperons sensitive to the dense phase of the collision ?
- > Is collective flow at high beam energies sensitive to the EOS?
- Which transport/hybrid codes are suited to extract information on the nuclear EOS from observables in high-energy collisions ?
- > How to disentangle effects of EOS and phase transition?