

Nadine Mariel Chiera :: Paul Scherrer Institut & University of Bern

Superheavy elements copernicium and flerovium selenides: First Cn-Se bond observation

TASCA 15 – 14th Workshop on Recoil Separator for Superheavy Element Chemistry GSI, Darmstadt – October 23, 2015

The Superheavy Elements Cn and Fl

1																	1
1 H tydrogen 007, 1.009j	2		Key:		1	UPAC	Perio	dic Tal	ole of	the Ele	ement	S 13	14	15	16	17	F he
3 Li Itthium 5.938, 6.997]	4 Be beryllium 9.012		atomic num Symb name standard atomic	ol								5 B boron 110.80, 10.83	6 C carbon [12.00.12.02]	7 N nitrogen (14.00, 14.01)	8 O oxygen [15.99, 16.00]	9 F fluorine 19.06	P n 2
11 Na sodium 22.99	12 Mg magnesium (24.30, 24.31)	3	4	5	6	7	B	9	10	11	12	13 Al aluminium 26.98	14 Si silican (28.08, 28.09)	15 P phosphorus 30.97	16 S sulfur [32.05, 32.08]	17 CI chlorine [35.44, 35.46]	-
19 K potassium 39.10	20 Ca calcium 40.08	21 Sc scandium 44.96	-22 Ti Bitanium 47.87	23 V vanadium 50.94	24 Cr chromium 52.00	25 Mn manganesa 54.94	26 Fe iron talia	27 Co cobalt 58.93	28 Ni nickel 58.69	29 Cu copper 63.55	30 Zn zinc 65.38(2)	31 Ga gallum e9.72	32 Ge germanium 72.63	33 As arsenic 74.92	34 Se selenium 78.96(3)	35 Br bromine (7930, 7931)	kr 8
37 Rb rubidium 85.47	38 Sr strontium 87.62	39 Y yttmam 88.91	40 Zr zirconium 91.22	41 Nb niobium 92.91	42 Mo molytidenium 35.56(2)	43 TC lechnstium	44 Ru rutheniam 101.1	45 Rh modium 102.9	46 Pd pattadium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In indium 114.8	50 Sn 116.7	51 Sb antimony 121.8	52 Te Iellurium 127.6	53 I iodine 126.9	3
55 CS caesium 132.9	56 Ba barium 137.3	57-71 Lanthannids	72 Hf helnium 178.5	73 Ta tantalum 180.9	74 W tungslen 183.8	75 Re rhenlum 186.2	76 OS 05mium 190.2	77 Ir 192.2	78 Pt platinum 195.1	79 Au geld 197,0	80 Hg mercury 200.6	81 TI (hallium (204.3, 204.4)	82 Pb tead	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	F
87 Fr Itendum	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg sesborgium	107 Bh bohrium	108 Hs hasslum	109 Mt meilnerium	110 Ds darmstadtium	111 Rg raentgenium	112 Cn copemicium		114 Fl Nerovium		116 Lv Ilvermortum		
		57 La tunthsnum t38.9	58 Ce certuro secturo	59 Pr praseodymium 140.9	60 Nd neodymium 1412	61 Pm promethium	62 Sm samarium 150 4	63 Eu europium 1520	64 Gd gadolinium 1573	65 Tb terbium 158.9	66 Dy dysprosium 162.5	67 Ho halmium 1609	68 Er erbium 167.3	69 Tm thulum 108.9	70 Yb ytterbium 1/3.1	71 Lu stetum 175.0	
		89 Ac actinium	90 Th Usanum 232.0	91 Pa protectinium 231.0	92 U usardum 236.0	93 Np replanium	94 Pu phalemium	95 Am americiam	96 Cm carium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm terrison	101 Md mendelevaum	102 No nobelium	103 Lr Iowencium	

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

For updates to this table, see upac.org/reports/periodic_table/. This version is dated 1 May 2013. Copyright © 2013 IUPAC, the international Union of Pure and Applied Chemistry.

Production and identification of Cn and FI

The possibility of **simultaneous production** of Cn and Fl gives the chance of perform **comparative studies**.

Selenium as stationary surface

VON SZENTPÁLY L., "Predictions of the Sublimation Enthalpies of Group 12 Chalcogenides and the Formation Enthalpies of their Polonides", The Journal of Physical Chemistry A, 2008, 112.49: 12695-12701; HAYNES W.M., LIDE D.R., BRUNO T.J., "CRC Handbook of Chemistry and Physics 2012-2013", CRC press; BOONE S., KLEPPA O.J., "Enthalpies of formation for Group IV selenides (GeSe₂, GeSe_{2(am)}, SnSe, SnSe₂, PbSe) by direct-combination drop calorimetry", Thermochimica Acta, 1992, 197. 1, 109-121; P.A.G. O'HARE, SUSMAN S., VOLIN K.J., "Thermochemistry of germanium monoselenide, and the GeSe bond dissociation enthalpy", The Journal of Chemical Thermodynamics, 1989, 21.8: 827-836.

Se major allotropes

trigonal

monoclinic (α -, β -, γ -Se)

black amorphous Se

red amorphous Se

Red a-Se covered columns and PIN diodes

red a-Se coated column

red a-Se coated PIN diode

N.M. Chiera, R. Eichler, A. Vögele, A. Türler, Vapor deposition coating of fused silica tubes with amorphous selenium, Thin Solid Films (2015).

Trigonal Se covered columns and PIN diodes

trigonal Se coated column

trigonal Se coated PIN diode

Different allotrope, diverse reactivity

Isothermal chromatography, T = 23 °C

Preliminary results

On-line experiments

Red a-Se covered PIN diodes

First 10 detectors, isothermal part of the COLD array

¹⁸⁵Hg deposition pattern on Se and Au detectors

Preliminary results

Se surface scanning electron microscopy (SEM)

Se surface X-ray diffraction (XRD)

The Se crystallization occurs at the interfaces

Grazing Incidence X-ray diffraction (GIXRD)?

KIM, K.S., et al. "Crystallization of amorphous selenium films. I. Morphology and kinetics". J. Appl. Phys., 1973, 44.12: 5237-5244; CLEMENT, R., et al. "The photocrystallization of amorphous selenium thin films" J. Non-Cryst. Solids, 1974, 15.3: 505-516; LEGROS, A., et al. "Effect on water impurity on the crystallization of vacuum evaporated Se", J. Appl. Phys., 1995, 78.5: 3048-3051

Cn events on Se detectors

TKE = 234 MeV TKE = 210 MeV

²⁸³Cn ↓

Preliminary results

Se diodes coverage: 5% red a-Se, 90 % t-Se

Cn reacted with trigonal Se with a probability >95%, with a - ΔH_{ads} > 48 kJ/mol

Se vacuum evaporation PIN diodes coverage

Next steps:

- crystallization studies (storage time) through ¹⁹⁷Hg deposition
- resolution and layer thickness calculation through alpha spectroscopy and AASIfit simulations

□ The Se surface crystallization can be monitored by Hg deposition

□ A severe kinetic hindrance of the Hg / trigonal Se reaction is confirmed

□ First indication that the **interaction of Cn with Se is more favored**, if compared to the Hg / trigonal Se system

□ Inverse thermochromatographic studies will be performed to understand the kinetic process of the Hg/Se interaction. Hopefully an activation energy will be derived.

- **G** Future **on-line experiments** are envisaged to:
 - confirm the Cn chemical behavior on trigonal Se surfaces
 - assess the chemical behavior of Cn on red amorphous surfaces
 - assess the chemical behavior of FI on both selenium allotropic surfaces

PAUL SCHERRER INSTITUT

N.V. Aksenov, Y.V. Albin, G.A. Bozhikov, V.I. Chepigin, S.N. Dmitriev, R. Dressler, R. Eichler, V.Ya. Lebedev, A.B. Liechti, O.N. Malyshev, E.A. Maugeri, O.V. Petrushkin, D. Piguet, Y.A. Popov, A.V. Sabel'nikov, P. Steinegger, A.I. Svirikhin, A. Türler, I. Usoltsev, G.K. Vostokin, A. Vögele, A.V. Yeremin

JINR

Dubna

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Thank you for your kind attention