Development of a rapid solvent extraction apparatus for aqueous chemistry of the heaviest elements

Yukiko Komori for a RIKEN – Niigata Univ. – JAEA – Univ. Tsukuba – Tohoku Univ. – Univ. Oslo collaboration (The SHE aqueous chemistry collaboration at GARIS)

# **Introduction: Aqueous chemistry of SHEs**

| Chemistry of SHEs                   | Nuclide                          | Half-life     | Production rate* |
|-------------------------------------|----------------------------------|---------------|------------------|
| 104 105 106 107 108 112 112 114     | <sup>261</sup> Rf <sup>a</sup>   | 68 s          | 420 atoms/h      |
| Rf Db Sg Bh Hs Cn <sup>113</sup> Fl | <sup>262</sup> Db                | 34 s          | 70 atoms/h       |
| Gas: $7 = 104 - 108 \ 112 - 114$    | <sup>265</sup> Sg <sup>a,b</sup> | 8.5 s/14.4 s  | 12 atoms/h       |
| Aqueous: $Z = 104 - 106$            | <sup>266</sup> Bh                | <b>10.7</b> s | 1.7 atoms/h      |

\* <sup>248</sup>Cm target thickness: 300 μg/cm<sup>2</sup>; Beam intensity: 2 pμA

Pioneering cation-exchange studies of Sg in HNO<sub>3</sub>/HF and HNO<sub>3</sub> Schädel et al., Radiochim. Acta **77**, 149 (1997).; Radiochim. Acta **83**, 163 (1998).

<u>Conventional aqueous chemistry apparatus used for Rf, Db, and Sg</u> ARCA and AIDA: batch-wise column chromatography apparatuses with Si detectors for α/SF spectrometry

- Decay loss during aerosol collection (~30 s)
- Decay loss during α-source preparation (~30 s)
- Low detection efficiency: eff.( $\alpha$ ) = ~30%
  - $\rightarrow$  eff.( $\alpha$ - $\alpha$ ) = ~9%; eff.( $\alpha$ - $\alpha$ - $\alpha$ ) = ~3%
- A huge amount of background radioactivities of by-products

# **RIKEN GARIS gas-jet system**

Requirements for aqueous chemistry studies of Sg and the heavier SHEs:

- Continuous and rapid chemical separation
- Rapid and efficient α/SF detection under low-background condition

GARIS gas-jet system is ready for SHE chemistry at RIKEN:



- By-products can be removed almost completely.
- Liquid scintillation (LS) detectors with a high detection efficiency (~100%) will become available for aqueous chemistry of SHEs.

# **Purpose of this study**

Development of a continuous and rapid solvent extraction apparatus coupled to the GARIS gas-jet system for aqueous chemistry of the heaviest SHEs



Continuous dissolution (MDG), solvent extraction (FSE), and radiation detection with a flow LS detector

- Rapid chemical separation and α-source preparation
  - $\rightarrow$  Minimum decay loss
- High-detection efficiency (~100%) for α-α and α-SF correlations

# Feasibility of aqueous chemistry of Sg and Bh

### Production and decay studies of ${}^{265}Sg^{a,b}$ ( $T_{1/2} = 8.5 \text{ s}, 14.4 \text{ s}$ ) and ${}^{266}Bh$ (10.7 s):

 $^{248}$ Cm( $^{22}$ Ne,5*n*) $^{265}$ Sg<sup>*a*,*b*</sup> Haba et al., Phys. Rev. C **85**, 024611 (2012).

 $^{248}$ Cm( $^{23}$ Na,5*n*) $^{266}$ Bh Haba et al., TASCA15 contribution.

### **Continuous solvent extraction and LS detection (Present apparatus)**

| Nuolido                        | <i>T</i> <sub>1/2</sub> | σ    | Target                | Beam  | Cool. T. | Chem.  | Detec.    | Event rate |
|--------------------------------|-------------------------|------|-----------------------|-------|----------|--------|-----------|------------|
| Nuclide                        | [S]                     | [pb] | [µg/cm <sup>2</sup> ] | [pµA] | [S]      | Y. [%] | eff.* [%] | [/d]       |
| <sup>265</sup> Sg <sup>a</sup> | 8.5                     | 180  | 300                   | 4     | 10       | 50     | 100       | 3.2        |
| <sup>265</sup> Sg <sup>b</sup> | 14.4                    | 200  | 300                   | 4     | 10       | 50     | 100       | 5.3        |
| <sup>266</sup> Bh              | 10.7                    | 55   | 300                   | 4     | 10       | 50     | 100       | 1.2        |

#### **Batch-wise chemical separation (e.g. ARCA and AIDA)**

| Nuclid                         | T <sub>1/2</sub> | σ    | Target                | Beam  | Coll. T. | Cool. T. | Chem.  | Detec.*  | Event rate |
|--------------------------------|------------------|------|-----------------------|-------|----------|----------|--------|----------|------------|
| е                              | [S]              | [pb] | [µg/cm <sup>2</sup> ] | [pµA] | [s]      | [S]      | Y. [%] | eff. [%] | [/d]       |
| <sup>265</sup> Sg <sup>a</sup> | 8.5              | 180  | 300                   | 4     | 30       | 30       | 50     | 9        | 0.02       |
| <sup>265</sup> Sg <sup>b</sup> | 14.4             | 200  | 300                   | 4     | 30       | 30       | 50     | 9        | 0.1        |
| <sup>266</sup> Bh              | 10.7             | 55   | 300                   | 4     | 30       | 30       | 50     | 9        | 0.01       |

\* Efficiencies for  $\alpha$ - $\alpha$  correlations.



- Development of Membrane DeGasser (MDG) and Flow Solvent Extractor (FSE)
- Performance evaluation of MDG and FSE
- Online solvent extraction of Tc and Re with MDG-FSE

### **Development (1): MDG**

#### Univ. Oslo/JAEA Membrane DeGasser (MDG)

Ooe et al., J. Radioanal. Nucl. Chem. 303, 1317 (2015).



Dissolution efficiency of <sup>91m</sup>Mo ( $T_{1/2}$  = 65 s):

- > 80% at high flow rates of 6–24 mL/min
- decreases with a decrease of the aq. flow rate.
  50–60% at a lower flow rate of 1 mL/min

## **Development (1): MDG**

### **RIKEN Membrane DeGasser (RIKEN-MDG)**

A new MDG was fabricated by modifying Univ. Oslo/JAEA-MDG to dissolve shorter-lived nuclides with high efficiencies at a low flow rate of ~1 mL/min.

Major modifications:

- Dead volume: ~90  $\mu L \rightarrow$  ~23  $\mu L$
- Static mixer → Simple T-connecter





### **Development (2): FSE**

### **Flow Solvent Extractor (FSE)**



## **Experimental (1): Performance evaluation of MDG**



## **Experimental (2): Performance evaluation of FSE**

- Production of long-lived and no-carrier-added radiotracers at RIKEN AVF:  $^{nat}Mo(d,xn)^{95m}Tc (T_{1/2} = 61 \text{ d}) \text{ and } ^{nat}W(d,xn)^{183}Re (T_{1/2} = 70 \text{ d})$
- Extraction with FSE: HNO<sub>3</sub>-Tri-*n*-octylamine (TOA) / toluene



 $\rightarrow$  Determination of distribution ratio,  $D = [A]_{\text{org.}}/[A]_{\text{aq.}}$ ; A: radioactivities

|                  | D vs. Capillary length                                           | D vs. [TOA]                                                 |  |  |
|------------------|------------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Aq. phase        | 0.1, 1 M HNO <sub>3</sub> + <sup>95m</sup> Tc, <sup>183</sup> Re | 1 M HNO <sub>3</sub> + <sup>95m</sup> Tc, <sup>183</sup> Re |  |  |
| Org. phase       | 0.01 M TOA / toluene                                             | 0.01, 0.05, 0.1 M TOA / toluene                             |  |  |
| Capillary length | 5, 10, 20, 30, 40, 50, (60), 100 cm                              | 100 cm                                                      |  |  |

 $\rightarrow$  Comparison with D in equilibrium in the batch extraction (30-min shaking)

### Experimental (3): Online solvent extraction of Tc and Re with MDG-FSE



Nuclear reactions:  $^{nat}Mo(d,xn)^{92}Tc (T_{1/2} = 4.25 \text{ min}),$   $^{94g}Tc (T_{1/2} = 293 \text{ min})$  $^{nat}W(d,xn)^{181}Re (T_{1/2} = 19.9 \text{ h})$ 

- FSE ext. (1): *D* vs. Capillary length, *L L* = 5, 10, 20, 30, 40, 50, 70, and 100 cm
- FSE ext. (2): *D* vs. [TOA] [TOA] = 0.005, 0.01, 0.05, and 0.1 M
- Batch ext. (3-min shaking)



- The dissolution efficiency of ~60% was obtained with RIKEN-MDG for the short-lived <sup>90m</sup>Nb even at a low aq. flow rate of 1 mL/min.
- $\rightarrow$  Reduction of chemicals and radioactive wastes Reduction of quenching effects and increase of energy resolution in α/SF-spectrometry with a LS detector. 12

## **Results and discussion (2): Performance of FSE**



- Extraction equilibrium is attained with the 40-cm capillary. Time required for solutions to pass through the 40-cm capillary: ~2.4 s
- D values with FSE consistent with those by the batch method.
- FSE is applicable to determine D values in the wide D range:
  D = ~0.1 ~20.

### Results and discussion (3): Online solvent extraction of Tc and Re with MDG-FSE



- Discrepancies in *D* values between FSE and the batch extractions were found for <sup>92,94g</sup>Tc at [TOA] > 0.05 M.
- Online solvent extraction of Tc and Re was successfully performed with stable and high chemical yields:
  92±3% (<sup>181</sup>Re) during the 6-h beam time

## Summary

- We have developed a new rapid chemistry apparatus which consists of MDG and FSE for the aqueous chemistry studies of Sg and Bh at GARIS.
- Online solvent extraction of Tc and Re was successfully performed with MDG-FSE in HNO<sub>3</sub>-TOA/toluene.
  - Rapid extraction equilibrium: ~2.4 s (40-cm capillary)
  - Wide applicable *D* range:  $D = \sim 0.1 \sim 20$
  - High chemical yield: > 90% (<sup>181</sup>Re)
  - Stable running: > 6 h
  - Low flow rate: 1 mL/min
- A flow liquid scintillation detector will be developed by referring to the knowhow from SISAK.
- Interesting chemistry systems for Sg and Bh are under study using radiotracers of their homologues.

### **Collaborators for the aqueous chemistry at GARIS**

Nishina Center for Accelerator-Based Science, RIKEN H. Haba, S. Yanou, and K. Watanabe

*Niigata Univ.* K. Ooe, M. Murakami, D., Sato, and R. Motoyama

Advanced Science Research Center, JAEA

A. Toyoshima and A. Mitsukai

*ELPH, Tohoku Univ.* H. Kikunaga

Univ. Tsukuba A. Sakaguchi and J. Inagaki

Univ. Oslo

J. P. Omtvedt