MARA, Mass Analyzing Recoil Apparatus

Jari Partanen, Jan Saren, Juha Tuunanen, Juha Uusitalo

MARA

Main properties of the new JYFL MARA separator compared to FMA @ ANL

	FMA	MARA
- Configuration	QQEDMDEDQQ	QQQEDMD
- Horizontal magnification	-1.93	-1.55
- Vertical magnification	0.98	-4.48
- M/Q dispersion	10.0 mm/% (variable)	8.1 mm/%
 First order resolving power, 2 mm beam spot 	259	259
 Solid angle acceptance central m/q and energy 	8 msr	10 msr
- Energy acceptance for		
central mass and angle	+20 % - 15 %	+20 % - 15 %
- M/Q acceptance	±4%	±7%

MWPC 60 mm x 160 mm, DSSD 48 mm x 128 mm

MWPC 60 mm x 160 mm, DSSD 48 mm x 128 mm, 1 mm x 1mm in the near future: 0.67 mm x 0.67 mm, 72 chn x 192chn Si-box and Si punch through detectors

TASCA2015 Workshop, Darmstadt, Friday 23th of October 2015

Image size 40 cm behind the MARA focal plane

TASCA2015 Workshop, Darmstadt, Friday 23th of October 2015

Proposed cases for the commissioning campaign

- ³⁶Ar + ⁴⁵Sc -> ⁸¹Y*, mass 80 region, symmetric

- ⁷⁸Kr + ⁵⁸Ni -> ¹³⁶Gd*, test of inverse kinematics

- ⁵⁸Ni + ¹⁰⁶Cd -> ¹⁶⁴Os*, vetotube test
 - alpha emitters, proton emitters

- ⁷⁸Kr + ⁹²Mo -> ¹⁷⁰Pt*, heavy, symmetric

- alpha emitters, proton emitters
- testing RDT

- comparison to FMA

- ⁴⁰Ar + ¹⁵⁰Sm -> ¹⁹⁰Hg*, heavy, asymmetric - comparison to RITU

A target chamber under design:

Holder ladder for degrader foils

To MARA

Holder ladder for the carbon reset foil

> Veto detector for charged evaporated particles (in cooperation with University of York)

Rotatable wheel for four rotatable target holders.

PRL 59 (1987) C. J. Lister et al.,

 58 Ni + ²⁴Mg → ⁸²Zr^{*} → ⁸⁰Zr + 2n E_{lab} = 180 MeV (MOT) Target 500 µg/cm²

⁸⁰Zr 10 μb ⁸⁰Y 2 mb ⁸⁰Sr 44 mb A = 79 250 mb A = 77 αp ⁷⁷Rb, αn ⁷⁷Sr smaller fraction

With 10 pnA beam, ⁸⁰Zr yield at the target 8/s

yields at the focal plane Four charge states collected (~68 %)

Two charge states (mass slits, ~ 37 %)

⁸⁰ Zr	5 Hz	3 Hz
⁸⁰ Y	1000 Hz	600 Hz
⁸⁰ Sr	22 kHz	12 kHz
A=79	120 kHz	10 kHz
Rest	25 kHz	10 kHz
Total	~ 170 kHz	~ 33 kHz

42 Ca + 40 Ca → 82 Zr^{*} → 80 Zr + 2n E_{lab} = 120 MeV (MOT) Target 500 µg/cm²

Possible physics program

- Complementary to RITU physics
- In-beam and delayed spectroscopic studies at and beyond the proton drip line at 30 < Z < 70 (< 82)
 - Delayed spectroscpy,
 - $\boldsymbol{\beta}$ delayed proton emitters,
 - proton emitters, alpha emitters
- Gas-cell and LEB (MARA as a pre-separator)
 - laser ionization
 - MRTOF, mass measurements
 - MRTOF assisted delayed spectroscopy
- Heavier elements, No region
 - charge plunger
 - recoil shadowed electron spectroscopy

Figure 2: A schematic overview of the low-energy radioactive ion beam facility to be constructed after the focal plane of the vacuum-mode recoil spectrometer MARA. Laser ionization is performed either in the gas cell (1), before the exit nozzle in a transverse geometry (2) or in the gas jet (3).

Recoil shadow method

²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No

Z. Physik A 285, 159-169 (1978)

Zeitschrift für Physik A © by Springer-Verlag 1978

In-Beam Spectroscopy of Low Energy Conversion Electrons with a Recoil Shadow Method – A New Possibility for Subnanosecond Lifetime Measurements

H. Backe, L. Richter, R. Willwater, E. Kankeleit, E. Kuphal*, and Y. Nakayama** Institut für Kernphysik der TH Darmstadt, Darmstadt, Germany

B. Martin

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Fig. 12. Life time measurements on certain levels in ^{162,163,164}Yb with the recoil shadow method by variation of the target position d relative to the edge of the semicylindrical baffle. The results are $T_{1/2} = (971 \pm 31)$ ps and $T_{1/2} = (439 \pm 37)$ ps for the $2^+ \rightarrow 0^+$ transitions in ¹⁶⁴Yb and ¹⁶²Yb, respectively. For the 203.2 keV transition in ¹⁶³Yb the two half life components are $T_{1/2}^{(1)} = (108 \pm 7)$ ps and $T_{1/2}^{(2)} = (1.2 \pm 0.3)$ ns

Fig. 8. The recoil shadow method. It is shown a cut through the electron transport system containing the beam and solenoid symmetry axis. The longitudinal baffle avoids detection of prompt electrons but allows very efficiently passage of delayed electrons emitted in flight

Charge plunger technique

NUCLEAR INSTRUMENTS AND METHODS 148 (1978) 369-379 ; © NORTH-HOLLAND PUBLISHING CO.

LIFETIME MEASUREMENTS OF NUCLEAR LEVELS WITH THE CHARGE PLUNGER TECHNIQUE

G. ULFERT, D. HABS, V. METAG and H. J. SPECHT

Physikalisches Institut der Universität Heidelberg and Max-Planck-Institut für Kernphysik, Heidelberg, W. Germany

Fig. 4. Exploration of Phillips was focus at 112 Data by providen as 35 StoV, massured along the most collocat for torional absorber behavior larget and tables led.

Thank you !

MARA2015: Status, Physics and Future

Workshop @ JYFLACCLAB, Jyväskylä December 15-16, 2015

