Present Status and Perspectives of SHE Syntheses at RIKEN GARIS

RIKEN Nishina Center

Hiromitsu Haba

for the SHE synthesis collaboration at GARIS

CONTENTS

- **1. Production and decay studies of RIs for SHE chemistry** ²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh
- 2. Future plans of SHE syntheses at RIKEN

2IK=I

1. Production and decay studies of RIs for SHE chemistry

Coupling SHE chemistry to a recoil separator

Breakthroughs in SHE chemistry

- Chemical experiments under low background condition
- Stable and high gas-jet transport yields
- New chemical reactions

Development of a gas-jet transport system coupled to GARIS

- ¹⁶⁹Tm(⁴⁰Ar,3*n*)²⁰⁶Fr; ²⁰⁸Pb(⁴⁰Ar,3*n*)²⁴⁵Fm [JNRS 8, 55 (2007); EPJD 45, 81 (2007)]
- ²³⁸U(²²Ne,5*n*)²⁵⁵No [JNRS 9, 27 (2008)]

Production and decay studies of SHE RIs for chemical studies

- ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf^{*a*,*b*} [Chem. Lett. **38**, 426 (2009); PRC **83**, 034602 (2011)]
- ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db [PRC 89, 024618 (2014)]
- ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg^{*a,b*} [PRC 85, 024611 (2012)] \rightarrow Sg(CO)₆ chemistry
- ²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh [This work]

Experimental setup

Experimental conditions

Nuclide	²⁶⁶ Bh (<i>T</i> _{1/2} = 1.20 s ¹⁾)	²⁶⁷ Bh (<i>T</i> _{1/2} = 13.7 s ¹⁾)		
Reaction	²⁴⁸ Cm(²³ Na,5 <i>n</i>)	²⁴⁸ Cm(²³ Na,4 <i>n</i>)		
Cross section (pb)	~50 (5 <i>n</i> + 4 <i>n</i>)? ²⁾			
Beam energy, E _{lab.} (MeV)	131			
Beam intensity (pµA)	3			
²⁴⁸ Cm ₂ O ₃ thickness (μg/cm ²)	290; 250			
Magnetic rigidity (Tm)	2.12			
GARIS He (Pa)	33			
RTC Mylar window (µm)	0.	.7		
Honeycomb grid (%)	78			
Gas-jet He (kPa)	80			
Chamber depth (mm)	20			
He flow rate (L/min)	5.0			
KCl generator (^o C)	620			
Step interval of MANON (s)	5.0; 8.	5; 15.0		
1) Wilk <i>et al.</i> , PRL 85 , 2697 (2000).; Eichler <i>et al.</i> , Nature 407 , 63 (2000).; Morita <i>et al.</i> , JSPS 81 , 103210 (2012).; Qin <i>et al.</i> Nucl. Phys. Rev. 23 , 400 (2006).				

2) Morira *et al.,* JPSJ **78**, 064201 (2009).

<u>α-particle spectrum</u>

Excitation function calculated by HIVAP

Reisdorf and Schädel, ZPA **343**, 47 (1992). Nishio *et al.*, PRL **93**, 162701 (2004). Nishio *et al.*, PRC **82**, 024611 (2010).

- For ²⁴⁸Cm(²³Na,xn)^{271-x}Bh, $\sigma(5n)$ is 60 pb, and $\sigma(4n)$ is more than one order of magnitude smaller than $\sigma(5n)$.
- → Most of the observed events in this work can be assigned to ²⁶⁶Bh.

Haba et al., PRC **83**, 034602 (2011). Murakami et al., PRC **88**, 024618 (2013).

Haba et al., PRC 89, 024618 (2014).

Decay properties of ²⁶⁶Bh

- E_{α} of ²⁶⁶Bh spread widely in E_{α} = 8.62– 9.40 MeV.
- $T_{1/2} = 10.7^{+4.2}_{-2.4}$ s in this work is longer than those of ²⁶⁶Bh in the literatures.

Nuclide	This work		Refs. [1–4]	
	Ν	<i>T</i> _{1/2} [s]	Ν	<i>T</i> _{1/2} [s]
²⁶⁶ Bh	12	10.7 ^{+4.2} _{-2.4}	8	1.20 ^{+0.66} _{-0.31}
²⁶⁷ Bh			11	13.7 ^{+5.9} 3.2

[1] 249 Bk(22 Ne,5;4*n*) 266,267 Bh (*N* = 1, 5): Wilk *et al.*, PRL **85**, 2697 (2000). [2] 249 Bk(22 Ne,4*n*) 267 Bh (*N* = 6): Eichler *et al.*, Nature **407**, 63 (2000). [3] 243 Am(26 Mg,3*n*) 266 Bh (*N* = 4): Qin *et al.*, Nucl. Phys. Rev. **23**, 400 (2006). [4] 209 Bi(70 Zn,*n*) 278 113 $\rightarrow {}^{266}$ Bh (*N* = 3): Morita *et al.*, JPSJ **81**, 103201 (2012).

- Existence of an isomeric state in ²⁶⁶Bh?
 → Further investigation of ²⁶⁷Bh at a lower beam energy
- The longer half-life of ²⁶⁶Bh is good for Bh chemistry in the future.

Excitation function for ²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh

Reaction	Cross section	Popetion*	Cross sections*
	at 131 MeV	Reaction	at 117/123 MeV
²⁴⁸ Cm(²³ Na,5 <i>n</i>) ²⁶⁶ Bh	55 \pm 16 pb	²⁴⁹ Bk(²² Ne,5 <i>n</i>) ²⁶⁶ Bh	-/25–250 pb
		²⁴⁹ Bk(²² Ne,4 <i>n</i>) ²⁶⁷ Bh	58 ⁺³³ ₋₁₅ /96 ⁺⁵⁵ ₋₂₅ pb

*Wilk et al., PRL **85**, 2697 (2000).

Assumptions

- $T_{1/2}(^{266}Bh) = 10.7 s$
- SF branch of ²⁶⁶Bh: $b_{SF} = 0\%$
- GARIS transmission: 15%
- Gas-jet transport efficiency: 50%
- Gas-jet transport time: 2.7 s
- The ²⁴⁸Cm(²³Na,5*n*)²⁶⁶Bh cross section is comparable to the ²⁴⁹Bk(²²Ne,5;4*n*)^{266,267}Bh.
- HIVAP reproduces the ²⁴⁸Cm(²³Na,5n)²⁶⁶Bh cross section.

Cross section systematics for the ²⁴⁸Cm(X,5*n***) reactions**

2. Future plans of SHE syntheses at RIKEN

Chemistry using preseparated ²⁶¹Rf^a, ²⁶²Db, ²⁶⁵Sg^{a,b}, and ²⁶⁶Bh

- ²⁴⁸Cm(²³Na,xn)^{271-x}Bh (in progress)
- Aqueous chemistry of Sg and Bh by solvent extraction with LS Development of a rapid solvent extraction apparatus coupled to GARIS
 → TASCA15 contribution by Y. Komori
- Gas chemistry of organometallic compounds of SHEs
 - \rightarrow Assessing the thermal stability of Sg(CO)₆ (R. Eichler and Ch. E. Düllmann)

Syntheses of the heaviest SHEs

- ²⁴⁸Cm(⁵⁰Ti,*xn*)^{298-x}118 (Feb.–Mar., 2016)
 - ☑ ⁵⁰Ti-MIVOC with Cp*⁵⁰TiMe₃ from Univ. Strasbourg
 - \rightarrow Acceleration test in Jun., 2015: 0.5 pµA on target; 0.22 mg/h
 - □ 9 mg of ²⁴⁸Cm shipped to RIKEN from ORNL (Dec., 2015)
 - \rightarrow Preparation of ²⁴⁸Cm rotating target (500-µg/cm²; ϕ 100 mm)
 - □ GARIS II commissioning (Oct. 21–28, 2015 and Jan. 25–Feb. 15, 2016)
 - \rightarrow ²³⁸U(⁴⁸Ca,*xn*)^{286-x}Cn and ²⁴⁸Cm(⁴⁸Ca,*xn*)^{296-x}Lv

Collaborators for the GARIS gas-jet experiment

Nishina Center for Accelerator-Based Science, RIKEN

M. Huang, D. Kaji, J. Kanaya, Y. Komori, K. Morimoto, K. Morita, M. Murakami, M. Takeyama, K. Tanaka, T. Tanaka, Y. Wakabayashi, S. Yamaki, and A. Yoneda

Osaka Univ.

Y. Kasamatsu, N. Kondo, K. Nakamura, A. Shinohara, and T. Yokokita

Tohoku Univ.

H. Kikunaga

Niigata Univ. R. Aono, H. Kudo, K. Ooe, and S. Tsuto

Advanced Science Research Center, JAEA K. Nishio, A. Toyoshima, and K. Tsukada

IMP

F. L. Fan, Z. Qin, and Y. Wang

RIKEN

Thank you for your kind attention.