

Thank you for beeing here and not looking for an alternative

GS)

H. Leibrock: Normal Conducting FAIR Magnets

H. Leibrock: Normal Conducting FAIR Magnets

25.06.2015

Examples of current dominated magnets

Full size curved short SIS 300 dipole prototype (superconducting)

peak field on coil

4.9 T

Steering magnet for CR (vertical, BINP 2015)

GS

0.06 T

current density 1.4 A/mm² dipole field

25.06.2015

Pros and conts

Current dominated

- No/low saturation effects
- High flux densities possible with no/low change of field quality
- Easy combination of independend multipoles
- More ampere turns required for same field level => higher power consumption
- Field quality depends strongly on position of conductors
- Complex coil winding

Iron dominated

- Saturation effects above 1.6 Tesla in iron
- Hard to reached good field quality within a wide range of field level
- Complicated to include independend multipoles inside dipoles or quadrupoles
- Less ampere turns required for same field level => lower power consumption
- Field is mainly shaped by iron => better control on the relevant parts for the fiel quality during production

H. Leibrock: Normal Conducting FAIR Magnets

25.06.2015

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

Quadrupol Typs

- a) Collins quadrupole
 (≈,,Figure of 8"quadrupole)
- b) 1. Standard quadrupole (no widening of pole basis)

G S

- c) 2. Standard quadrupol (maximum widening of pole basis => reducing of saturation in pole)
- d) Panofsky quadrupole

25.06.2015

Quadrupol doublet

Quadrupoles focus in one direction but defocus in the other direction
Solution: Two quadrupoles (doublet) focus in both directions

The focal length for a combined system is given by:

$$\frac{1}{f_{\text{ges}}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2}$$

Combination of focusing and defocusing quadrupole with same focal length *f* und *-f*:

$$\frac{1}{f_{\rm ges}} = +\frac{d}{f^2}$$

(distance between two lenses: *d*)

H. Leibrock: Normal Conducting FAIR Magnets

Exotic Magnets

Solenoid

Simple coil

- Magnetic field along beam direction
- Focusing in both direction due to fringe effects

Septum

- Dipole magnets with small blade between injected / extracted beam and circulating beam
 - Blade: coil and shield
- as low as possible influence on circulating beam

H. Leibrock: Normal Conducting FAIR Magnets

Leitermaterialien

	Aluminium (rein, > 99.5%)	Kupfer (OFHC- Oxygen free high conductivity)
Preis (01/2003)	2,70 – 3,0 EUR/kg	8 – 16 EUR/kg
Leitfähigkeit	36 S m/mm ²	58 S m/mm ²
Dichte	2,70 g/cm ³	8,96 g/cm ³
Linearer Ausdeh- nungskoeffizient	23·10 ⁻⁶ K ⁻¹	17·10 ⁻⁶ K ⁻¹
Elastizitätsmodul	72.000 N/mm ²	123.000 N/mm ²
Keystoning-Effekt	Geringer	Höher
Oxydation	An Luft, löst sich elektrochemisch in gemischten Kühlkreisläufen mit Kupferspulen	Gering
Schlussfolgerungen (auf der Basis eines identischen <i>N</i> · <i>I</i>)	 ♦ Größer ♦ Leichter ♦ Größere Transparenz f. Teilchen ♦ Geringere Investitionskosten ♦ Höhere Betriebskosten ⇒ Eher für Detektormagnete 	 Kleiner Schwerer Verringerte Transparenz f. Teilchen Höhere Investitionskosten Geringere Betriebskosten => Eher für Beschleunigermagnete

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

25.06.2015

25.06.2015

Pulsed or fast ramped magnets

dB/dt induces eddy currents. This could lead to

reduces field quality

reduces flux density (delay of peak field)

could be avoided by using sinter materials (high electric resistivity but with reduced μ_r) and laminated yoke.

Ampere's circuital law:

$$\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \int_{A} \mathbf{j} \cdot d\mathbf{A} + \frac{d}{dt} \int_{A} \mathbf{D} \cdot d\mathbf{A} \quad \text{aus} \quad \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial}{\partial t} \mathbf{D}$$

Faraday's law of induction:

$$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} \,=\, -\frac{d}{dt} \int_{A} \mathbf{B} \cdot d\mathbf{A}$$

aus
$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B}$$

H. Leibrock: Normal Conducting FAIR Magnets

Design (1/2)

Requirements

- Maximum field/minimum field, effective length, bending radius, bending angle
- Aperture
- Field quality
- Ramp rate

Iron blocks or laminated yoke?

- Depends on ramp rate
- Which type of magnet?
 - Depends on field quality, flux density, environment
- Curved or straight dipole?
 - Depends on bending angle
- Ampere turns
 - Depends on aperture and maximum strength

Design (2/2)

Coil

• Cross section depends on N*I

First draft of 2d design

• with μ_r =const.

Improved 2d design

• Non linear 2d simulations ($\mu_r = \mu_r(B)$)

> 3d design and simulation

• Check of field quality

Making parameter table

• Detailing of yoke, coil, dimenions, cooling, power consumption, etc.

• Its a iterative process.

Example o	Frankasser and the second seco	102 to 201 101 The form of the May low one was presented were strating on the design of the des	Datenauszug des H-Magneten Abarkwiskei 10,000 ° Bahanoins 1,333 m Problektein Cep 1,10,01 ° La gustalitäkein Cep 1,10,01 ° La gustalitäkein Cep 1,10,00 ° La gustalitäkein Cep 1,10,00 ° masinake Kannenöhle 19,200 mm La fragatikeinen 2,200 mm Bahalage des 3cda 3440 m Bahalage des 3cda 340 m Bahalage des 3
	Damiladi, din 61.64.1998 Tali + 49 6169 11 3199 Pax: +49 6169 11 3785		
	Description:Note::::::::::::::::::::::::::::::::::::	<section-header></section-header>	dc-Betrieb für Ladungsopaktran Pääkiste in st.a. 199 7 Natsinaatsin 100 9 Natsinaatsin 100 9 Natsina

CR Dipole

- ♦ H-type
- Sector magnet
- Weight: ca. 60 tons
- ♦ Flux density within gap: 1.6 T
- Bedinge angle 15°
- Bending radius 8.125 m
- Integral field non-uniformity $\Delta \int B \, dl / \int B \, dl = \pm 1 \cdot 10^{-4}$
- Aperture $380 \times 140 \text{ mm}^2$

H. Leibrock: Normal Conducting FAIR Magnets

Other not mentioned CR magnets

Maximal integral gradient G _{max} ·l _{eff} (T)	4.7	Overall yoke width / height (m)	1.6
Effective magnet length $I_{eff}(m)$	1	Total weight (to)	10.6
Inscribed radius (mm)	160	Current (A)	1470
Total magnet length (m)	1.16	Power consumption (kW)	57

Maximal integral gradient G _{max} ·l _{eff} (T)	3.29	Overall yoke width / height (m)	1.6
Effective magnet length $I_{\rm eff}$ (m)	0.7	Total weight (to)	6.7
Inscribed radius (mm)	160	Current (A)	1480
Total magnet length (m)	0.9	Power consumption (kW)	47.5

Maximal integral gradient G _{max} ·l _{eff} (T)	3.5	Overall yoke width / height (m)	1.6
Effective magnet length $I_{eff}(m)$	1	Total weight (to)	10.2
Inscribed radius (mm)	185	Current (A)	1380
Total magnet length (m)	1.16	Power consumption (kW)	50.1

Maximal integral gradient G _{max} ·l _{eff} (T)	3.1	Overall yoke width / height (m)	0.88
Effective magnet length I _{eff} (m)	0.545	Total weight (to)	1.2
Inscribed radius (mm)	100	Current (A)	1210
Total magnet length (m)	0.75	Power consumption (kW)	14.8

GSİ

Sextupole strength -10 T/m² Field homogeneity (in radius 190 mm) $\pm 5 \times 10^{-3}$ Yoke length -500 mm Current -500 A Usable aperture $\pm 215 / \pm 90$ mm Power -8,75 kW Total weight -1350 kg Total length with coils -629 mm Overall width -884 mm Overall height -807 mm Copper bar -10x10 mm² with hole Ø5mm

ormal Conducting FAIR Magnets

25.06.2015

Some Numbers

more than 100 different types of NC-magnets
each magnet type must be designed and specified
number of NC-magnets (without experiments): > 630
estimated sum of costs: ca. 70 million Euro

Magnete HIT (Heidelberger Ionentherapie)

- Dedizierte Anlage für die Tumortherapie mit Ionen in Heidelberg
- Entwickelt von der GSI
- Inbetriebnahme des Beschleunigers durch GSI
- Erste Patientenbestrahlung Ende 2009
- Kommerzielle Anlagen im Bau bzw. in Inbetriebnahme
- Weitere Anlagen in Planung

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

GS)

Schaltdipol

H. Leibrock: Normal Conducting FAIR Magnets

GSĬ <u>z----</u>_____

-É

MEBT-Dipol (Medium Energy Beam Transport)

P. Rottländer: Design von Beschleunigermagneten

GS)

25.06.2015

H-Magnet

 \blacklozenge

Inflektor

• Window-Frame-C-Magnet

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

Bumper

- Window-Frame-Magnet
- Sehr schnell:
 - Joch aus Sintermaterial
 - Nur 2 Windungen
- ♦ 0.0195T

H. Leibrock: Normal Conducting FAIR Magnets

Septum I

- Window-Frame-C-Magnet
- Gestreckt mit Knick
- Septum
 - Trennt Bereiche mit konstantem Feld von feldfreien Bereichen
 - Geringe Spulenbreite an der Schneide
 - Spule aus Einzelteilen zusammengelötet
- 0.75T

H. Leibrock: Normal Conducting FAIR Magnets

Septum II

- Window-Frame-C-Magnet
- Gebogen
- Septum
 - Geringe Spulenbreite an der Schneide
 - Spule aus Einzelteilen zusammengelötet
- Betrieb in Serie mit Synchrotron-Dipolen
 0.9T

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

GS)

25.06.2015

15°-HEBT-Dipol (High Energy Beam Transport)

- H-Magnet
 Gebogen
 Gleicher Querschnitt wie der folgende Magnet
- Nullfeldspule
 für geraden
 Durchschuss
 integriert
- 1.51T

H. Leibrock: Normal Conducting FAIR Magnets

GSI

GSÌ

45°-HEBT-Dipol

- H-Magnet
- Gebogen
- Öffnung für Geradeausstrahl bei 3
 Magneten
 - Jochverstärkung zur Kompensation der Öffnung
 - Nullfeldspule integriert
- ♦ 1.51T

H. Leibrock: Normal Conducting FAIR Magnets

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

Matching Steerer

 Doppelsteerer
 Window-Frame-Magnet = Rahmensteerer

♦ 0.085T

H. Leibrock: Normal Conducting FAIR Magnets

Rohrsteerer

- Stromdominiert im cosθ-Design
- Doppelsteerer
- In den 70er Jahren als Low-Cost-Steerer entwickelt
 - Joch: Standard E-Motor-Stator
- Indirekte Kühlung mit Kühlhemd

GS

H. Leibrock: Normal Conducting FAIR Magnets

Synchrotron-(Vertikal-)Steerer

Einfachsteerer -> vertikal
 Window-Frame-Magnet
 Erhöhte Spulensymmetrie
 0.134T

H. Leibrock: Normal Conducting FAIR Magnets

HEBT-Steerer

- Window-Frame-Magnet
- Einfachsteerer =
 Einbau sowohl
 vertikal als auch
 horizontal
- Bild: Horizotalsteerer Gantry
- 🔶 0.1 T

H. Leibrock: Normal Conducting FAIR Magnets

LEBT-Quadrupol

- Quadrupol ohne
 Polbasisverbreiterung
 Singulett und Triplett
 - 3.2T/m

H. Leibrock: Normal Conducting FAIR Magnets

IH-Quadrupole

Kompakte Bauform bei höchsten Gradienten

- Maximale Polbasisverbreiterung
- Joch CoFe mit 0.35mm Dicke
- Einlagige Spule
- Bis 124T/m

25.06.2015

MEBT-Quadrupol (3.5)

- Maximale Polbasisverbreiterung
- Gleicher Querschnitt wie 3.6 und 3.7
- ▶ 18.8T/m

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

GS

Gantry-Quadrupol (3.6)

- Magnet ist baugleich zu 3.5
- Doppelgestell
- 1 schiefer Quadrupol
- 18.8T/m

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

HEBT-Quadrupole (3.7)

Wie 3.5 und 3.6 aber mit längerem Joch
19.3T/m

H. Leibrock: Normal Conducting FAIR Magnets

Synchrotron-Quadrupol

- "Figure of 8"-Quadrupol
 Demontierbare Polendstücke
- für Feldoptimierung und Längenshimming
- 7.0T/m

H. Leibrock: Normal Conducting FAIR Magnets

Solenoid

 0.54T
 Feld in Strahlrichtung

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets

Sextupol

25.06.2015

H. Leibrock: Normal Conducting FAIR Magnets