Structure of exotic compounds

E. Oset, IFIC , Universidad de Valencia- CSIC

A bit of chiral dynamics
B^{0} and $B^{0}{ }_{s}$ weak decays into $J /$ psi and $f_{0}(500), f_{0}(980)$
Predictions for $\Lambda_{b}->\mathrm{J} / \psi \mathrm{k}^{-} \mathrm{p}$ and $\mathrm{J} / \Psi \Lambda(1405)$

Predictions for hidden charm baryon states
Comparison with the $J / \psi p$ and $K^{-} p$ spectra of recent LHCb pentaquark experiment
Exotic states: multirho states, K* multirho, D* multirho, pseudotensor mesons, rho K Kbar, rho D* D*bar, D NN

Meson interaction

Pseudoscalar-pseudoscalar interaction: channels

1) $\pi^{+} \pi^{-}$
2) $\pi^{0} \pi^{0}$
3) $\mathrm{K}^{+} \mathrm{K}^{-}$
4) $\mathrm{K}^{0} \mathrm{Kbar}^{0}$

We use the chiral unitary approach: Bethe Salpeter equations in coupled channels

$$
T=(1-V G)^{-1} V
$$

5) $\eta \eta$

With \vee obtained from the chiral Lagrangians and G the loop function of two meson propagators .

$$
\begin{align*}
& G_{j j}(s)=\int_{0}^{q_{\max }} \frac{q^{2} d q}{(2 \pi)^{2}} \frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}\left[P^{02}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon\right]} \\
& V_{11}=-\frac{1}{2 f^{2}} s, \quad V_{12}=-\frac{1}{\sqrt{2} f^{2}}\left(s-m_{\pi}^{2}\right), \\
& V_{13}=-\frac{1}{4 f^{2}} s, \\
& V_{14}=-\frac{1}{4 f^{2}} s, \quad V_{15}=-\frac{1}{3 \sqrt{2} f^{2}} m_{\pi}^{2}, \\
& V_{22}=-\frac{1}{2 f^{2}} m_{\pi}^{2}, \\
& V_{23}=-\frac{1}{4 \sqrt{2} f^{2}} s, \quad V_{24}=-\frac{1}{4 \sqrt{2} f^{2}} s, \tag{8}\\
& V_{25}=-\frac{1}{6 f^{2}} m_{\pi}^{2} \text {, } \\
& V_{33}=-\frac{1}{2 f^{2}} s, \quad V_{34}=-\frac{1}{4 f^{2}} s, \\
& V_{35}=-\frac{1}{12 \sqrt{2} f^{2}}\left(9 s-6 m_{\eta}^{2}-2 m_{\pi}^{2}\right), \\
& V_{44}=-\frac{1}{2 f^{2}} s, \quad V_{45}=-\frac{1}{12 \sqrt{2} f^{2}}\left(9 s-6 m_{\eta}^{2}-2 m_{\pi}^{2}\right), \quad V_{55}=-\frac{1}{18 f^{2}}\left(16 m_{K}^{2}-7 m_{\pi}^{2}\right),
\end{align*}
$$

Coupled channels:

$$
K^{-} p, \bar{K}^{0} n, \pi^{0} \Lambda, \pi^{0} \Sigma^{0}, \pi^{+} \Sigma^{-}, \pi^{-} \Sigma^{+}, \eta \Lambda, \eta \Sigma^{0}, K^{0} \Xi^{0} \text { and } K^{+} \Xi^{-}
$$

$$
T=[1-V G]^{-1} V \quad G_{i}=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{M_{i}}{E_{i}(\vec{q})}
$$

$$
V_{i j}(\sqrt{s})=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right)
$$

$$
\times\left(\frac{M_{i}+E_{i}}{2 M_{i}}\right)^{1 / 2}\left(\frac{M_{j}+E_{j}}{2 M_{j}}\right)^{1 / 2},
$$

$$
C_{i j}=\left(\begin{array}{cc}
3 & -\sqrt{\frac{3}{2}} \\
-\sqrt{\frac{3}{2}} & 4
\end{array}\right) \quad \text { for } \mathrm{I}=0
$$

Channels Kbar $N, \pi \Sigma$,

Coupled channels:

$K^{-} p, \bar{K}^{0} n, \pi^{0} \Lambda, \pi^{0} \Sigma^{0}, \pi^{+} \Sigma^{-}, \pi^{-} \Sigma^{+}, \eta \Lambda, \eta \Sigma^{0}, K^{0} \Xi^{0}$ and $K^{+} \Xi^{-}$

B^{0} and B_{s}^{0} decays into $J / \psi f_{0}(980)$ and $J / \psi f_{0}(500)$ and the nature of the scalar resonances

Much debate on recent LHCb experiments (see S. Stone, L. Zhang, PRL 2013)

In $B_{s}^{0}->J / \psi \pi^{+} \pi^{-}$, a big peak is seen for $f_{0}(980)$, and no signal for $f_{0}(500)$. LHCb PLB 2011, PRD 2012 Corroborated by Belle, CDF, DO collaborations.

Conversely, in $\mathrm{B}^{0}->\mathrm{J} / \psi \pi^{+} \pi^{-}$the $f_{0}(500)$ is seen and only a tiny signal for the $\mathrm{f}_{0}(980)$ is observed, LHCb PRD 2013.
B^{0} and B_{s}^{0} decays into $J / \psi f_{0}(980)$ and $J / \psi f_{0}(500)$ and the nature of the scalar resonances
W.H. Liang, EO

(b)

$$
\begin{aligned}
& M=\left(\begin{array}{lll}
u \bar{u} & u \bar{d} & u \bar{s} \\
d \bar{u} & d \bar{d} & d \bar{s} \\
s \bar{u} & s \bar{d} & s \bar{s}
\end{array}\right) \\
& M \cdot M=M \times(u \bar{u}+d \bar{d}+s \bar{s})
\end{aligned}
$$

$$
\phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right), \begin{aligned}
& d \bar{d}(u \bar{u}+d \bar{d}+s \bar{s}) \equiv(\phi \cdot \phi)_{22} \\
& =\pi^{-} \pi^{+}+\frac{1}{2} \pi^{0} \pi^{0}-\frac{1}{\sqrt{3}} \pi^{0} \eta+K^{0} \bar{K}^{0}+\frac{1}{6} \eta \eta \tag{4}\\
& s \bar{s}(u \bar{u}+d \bar{d}+s \bar{s}) \equiv(\phi \cdot \phi)_{33}=K^{-} K^{+}+K^{0} \bar{K}^{0}+\frac{4}{6} \eta \eta
\end{aligned}
$$

(a)

$$
\begin{array}{rlrl}
t & \left(\bar{B}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}\right) & \\
= & V_{P} V_{c d}\left(1+G_{\pi^{+} \pi^{-}} t_{\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}}+\frac{1}{2} \frac{1}{2} G_{\pi^{0} \pi^{0} t_{\pi^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-}}}\right. & & \\
& \left.+G_{K^{0} \bar{K}^{0} t^{0} 0^{0} \bar{K}^{0} \rightarrow \pi^{+} \pi^{-}}+\frac{1}{6} \frac{1}{2} G_{\eta \eta} t_{\eta \eta \rightarrow \pi^{+} \pi^{-}}\right), & & V_{c d}=-\sin \theta_{c}=-0.22534 \\
t\left(\bar{B}_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}\right) & & V_{c s}=\cos \theta_{c}=0.97427 . \\
= & V_{P} V_{c s}\left(G_{K^{+} K^{-}} t_{K^{+}+K^{-} \rightarrow \pi^{+} \pi^{-}}\right. & & \\
& \left.+G_{K^{0} \bar{K}^{0} t_{K^{0}} \bar{K}^{0} \rightarrow \pi^{+} \pi^{-}}+\frac{4}{6} \frac{1}{2} G_{\eta \eta} t_{\eta \eta \rightarrow \pi^{+} \pi^{-}}\right),
\end{array}
$$

$$
\bar{B}_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-} \text {decay }
$$

One normalization is arbritary but the two decays share the same normalization

$$
\bar{B}^{0} \rightarrow J / \psi \pi^{+} \pi^{-} \text {decay }
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\mathcal{B}\left[\bar{B}^{0} \rightarrow J / \psi f_{0}(980), f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right]}{\mathcal{B}\left[\bar{B}^{0} \rightarrow J / \psi f_{0}(500), f_{0}(500) \rightarrow \pi^{+} \pi^{-}\right]}=0.033 \pm 0.007 \\
\text { Exp: } \quad\left(0.6_{-0.4-2.6}^{+0.7+3.3}\right) \times 10^{-2} \\
\\
\frac{\Gamma\left(B^{0} \rightarrow J / \psi f_{0}(500)\right)}{\Gamma\left(B_{s}^{0} \rightarrow J / \psi f_{0}(980)\right)} \simeq(4.5 \pm 1.0) \times 10^{-2} . \\
\text { Exp: } \quad(2.08-4.13) \times 10^{-2}
\end{array}
\end{aligned}
$$

Our result

Note: all the ratios and the mass distributions are obtained with no free parameters, the only one has been fitted to scattering data.

Predictions for the $\Lambda_{b} \rightarrow J / \psi \Lambda(1405)$ decay

L. Roca, M. Mai, E.Oset and U.G. Meissner, EPJC 2015

$$
|H\rangle=\left|K^{-} p\right\rangle+\left|\bar{K}^{0} n\right\rangle-\frac{\sqrt{2}}{3}|\eta \Lambda\rangle+\frac{2}{3}\left|\eta^{\prime} \Lambda\right\rangle
$$

u d quarks in $\mathrm{I}=0$
u d quarks in $\mathrm{I}=0$ (spectators) an s quark -> total $\mathrm{I}=0$

$$
\begin{gathered}
\mathcal{M}_{j}\left(M_{\mathrm{inv}}\right)=V_{p}\left(h_{j}+\sum_{i} h_{i} G_{i}\left(M_{\mathrm{inv}}\right) t_{i j}\left(M_{\mathrm{inv}}\right)\right) \\
h_{\pi^{0} \Sigma^{0}}=h_{\pi^{+} \Sigma^{-}}=h_{\pi^{-} \Sigma^{+}}=0, h_{\eta \Lambda}=-\frac{\sqrt{2}}{3} \\
h_{K^{-} p}=h_{\bar{K}^{0} n}=1, h_{K^{+} \Xi^{-}}=h_{K^{0} \Xi^{0}}=0,
\end{gathered}
$$

Large concentration of strength around threshold

We have there $\mathrm{J} / \psi \mathrm{K}^{-} \mathrm{p}$, the final state in the LHCb pentaquark experiment

Note the large deviation from Phase space for $K^{-} p$
While for J/ ψp one has essentially Phase space except for the peak

How can the peak in J/ ψ appear? The J/ ψ N interaction is very weak !!

Predictions for hidden charm Baryon states JJ Wu, R Molina, E. O, B S Zou, PRL (2010)

(I, S)	z_{R}		g_{a}	
$(1 / 2,0)$		$\bar{D}^{*} \Sigma_{c}$	$\bar{D}^{*} \Lambda_{c}^{+}$	$J / \psi N$
	$4415-9.5 i$	$2.83-0.19 i$	$-0.07+0.05 i$	$-0.85+0.02 i$
		2.83	0.08	0.85

C W Xiao, J Nieves, E. O, PRD 2013 : D*bar $\sum_{\mathrm{c}}{ }^{*}$ channel included

$4417.04+i 4.11$	$J / \psi N$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D} \Sigma_{c}^{*}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$0.52-i q$	07	$0.08-i 0.07$	$2.81-i q .07$	$0.12-i 0.10$
$\left\|g_{i}\right\|$	0.53	0.11	$(2.81$	$0.11-i 0.51$	
$4481.04+i 17.38$	$J / \psi N$	$\bar{D}^{*} \Lambda_{c}$	$\bar{D}^{*} \Sigma_{c}$	$\bar{D} \Sigma_{c}^{*}$	$\bar{D}^{*} \Sigma_{c}^{*}$
g_{i}	$1.05+i q .10$	$0.18-i 0.09$	$0.12-i 0.10$	$0.22-i 0.05$	2.84
$\left\|g_{i}\right\|$	$(1.05$	0.20	0.16	0.22	2.84

L. Roca, J. Nieves, E. O arXiv:1507.04249

$$
\begin{aligned}
T^{(J / \psi p)}\left(M_{J / \psi p}\right) & =V_{p} h_{K-p} G_{J / \psi p}\left(M_{J / \psi p}\right) \\
& \times t_{J / \psi p \rightarrow J / \psi p}\left(M_{J / \psi p}\right) \\
t_{J / \psi p \rightarrow J / \psi p}= & \frac{g_{J / \psi p}^{2}}{M_{J / \psi p}^{2}-M_{R}^{2}+i M_{R} \Gamma_{R}} 2 \mathrm{M}_{\mathrm{R}}
\end{aligned}
$$

(a)

It is not trivial that the $\mathrm{K}^{-} \mathrm{p}$ and $\mathrm{J} / \psi \mathrm{p}$ distributions can be related like that

Since D^{*} bar Σ_{c} is the main channel one should start from this production and then make transition to $\mathrm{J} / \psi \mathrm{p}$, but this configuration is now allowed D^{*} bar Λ_{c} is allowed but it is has small strength in the wave function and then is Cabibbo suppressed

This leaves only $J / \psi p$ to initiate the interaction to produce the resonance

The D^{*} bar Σ_{c} or D^{*} bar $\Sigma^{*}{ }_{c}$ picture endures all tests of experiment: mass and width, spin parity $3 / 2^{-}$acceptable, coupling of resonance to J / ψ acceptable, nontrivial relation of $\mathrm{J} / \psi \mathrm{p}$ and $\mathrm{K}^{-} \mathrm{p}$ distributions established.

Multirho states:

The vector vector interaction can be studied using the local hidden gauge formalism, Bando et al.

$$
\begin{gathered}
\mathcal{L}^{(4 V)}=\frac{g^{2}}{2}\left\langle V_{\mu} V_{\nu} V^{\mu} V^{\nu}-V_{\nu} V_{\mu} V^{\mu} V^{\nu}\right\rangle, \quad \mathrm{g}=\mathrm{M}_{\mathrm{V}} / 2 \mathrm{f}_{\pi} \\
\mathcal{L}^{(3 V)}=i g\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V_{\mu} V^{\mu}\right) V^{\nu}\right\rangle, \\
V^{(I=0, S=2)}(s)=-4 g^{2}-8 g^{2}\left(\frac{3 s}{4 m_{\rho}^{2}}-1\right) \sim-20 g^{2} \\
V^{(I=2, S=2)}(s)=2 g^{2}+4 g^{2}\left(\frac{3 s}{4 m_{\rho}^{2}}-1\right) \sim 10 g^{2} \\
T=\frac{V}{1-V G}, \\
G(s)=i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{p^{2}-m_{\rho}^{2}+i \epsilon} \frac{1}{(Q-p)^{2}-m_{\rho}^{2}+i \epsilon},
\end{gathered}
$$

Rho-rho interaction in the hidden gauge approach
R.Molina, D. Nicmorus, E. O. PRD (08)

$$
\begin{aligned}
& \mathbf{V}=-\quad \begin{array}{l}
\rho^{+}\left(k_{1}\right) \\
\rho^{-}\left(k_{2}\right)
\end{array} \\
& +\rho_{\rho^{-}\left(k_{2}\right)}^{\rho^{-}\left(k_{4}\right)} \\
& +i_{\rho^{-}}^{\rho^{+}} \\
& \mathcal{P}^{(0)}=\frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \\
& \mathcal{P}^{(1)}=\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}-\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right) \\
& \mathcal{P}^{(2)}=\left\{\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu}+\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}\right)-\frac{1}{3} \epsilon_{\alpha} \epsilon^{\alpha} \epsilon_{\beta} \epsilon^{\beta}\right\}
\end{aligned}
$$

Bethe Salpeter eqn.

$$
T=\frac{V}{1-V G} \quad \mathrm{G} \text { is the } \rho \rho \text { propagator }
$$

Two l=0 states generated $\mathrm{f}_{0}, \mathrm{f}_{2}$ that
we associate to $f_{0}(1370)$ and $f_{2}(1270)$

We would like to construct states of many ρ with parallel spins, so as to have maximum binding for any pair

This is like a ferromagnet of ρ mesons

Fixed center approximation to ρf_{2} scattering

d)

This interaction generates the ρ_{3}

$$
\begin{gathered}
T_{1}=t_{1}+t_{1} G_{0} T_{2} \\
T_{2}=t_{2}+t_{2} G_{0} T_{1} \\
T=T_{1}+T_{2} \\
G_{0} \equiv \frac{1}{M_{f_{2}}} \int \frac{d^{3} q}{(2 \pi)^{3}} F_{f_{2}}(q) \frac{1}{q^{0^{2}-\vec{q}^{2}-m_{\rho}^{2}+i \epsilon}} \\
F_{f_{2}}(q)=\frac{1}{\mathcal{N}} \int_{|\vec{p}-\bar{q}|<\Lambda} d^{3} p \frac{1}{M_{f_{2}}-2 \omega_{\rho}(\vec{p})} \frac{1}{M_{f_{2}}-2 \omega_{\rho}(\vec{p}-\vec{q})}
\end{gathered}
$$

where the normalization factor \mathcal{N} is

$$
\mathcal{N}=\int_{p<\Lambda} d^{3} p \frac{1}{\left(M_{f_{2}}-2 \omega_{\rho}(\vec{p})\right)^{2}}
$$

One then continues and makes scattering of f_{2} with f_{2} to get the f_{4} Then ρ interaction with f_{4} to give ρ_{5} and finally f_{2} with f_{4} to give f_{6}

(a)

(c)

(b)

(d)

Luis Roca
E.O. 2010

On the nature of the $K_{2}^{*}(1430), K_{3}^{*}(1780)$, $K_{4}^{*}(2045), K_{5}^{*}(2380)$ and K_{6}^{*} as $K^{*}-$ multi- ρ states J. Yamagata-Sekihara ${ }^{1}$ L. Roca ${ }^{2}$ and E. Oset ${ }^{1}$

Phys.Rev. D82 (2010) 094017

	A	$B\left(b_{1} b_{2}\right)$
two-body	ρ	K^{*}
three-body	K^{*}	$f_{2}(\rho \rho)$
	ρ	$K_{2}^{*}\left(\rho K^{*}\right)$
four-body	f_{2}	$K_{2}^{*}\left(\rho K^{*}\right)$
five-body	K^{*}	$f_{4}\left(f_{2} f_{2}\right)$ six-body $K_{4}^{*}\left(f_{2} K_{2}^{*}\right)$ K_{2}^{*}

generated resonance	amplitude	mass, PDG [21]	mass only single scatt.	mass full model
$K_{2}^{*}(1430)$	ρK^{*}	1429 ± 1.4	-	1430
$K_{3}^{*}(1780)$	$K^{*} f_{2}$	1776 ± 7	1930	1790
$K_{4}^{*}(2045)$	$f_{2} K_{2}^{*}$	2045 ± 9	2466	2114
$K_{5}^{*}(2380)$	$K^{*} f_{4}$	$2382 \pm 14 \pm 19$	2736	2310
K_{6}^{*}	$K_{2}^{*} f_{4} f_{2} K_{4}^{*}$	-	$3073-3310$	$2661-2698$

Description of $\rho(1700)$ as a $\rho K \bar{K}$ system with the fixed center approximation
Bayar, Liang, Uchino and Xiao , EPJA 2014

The cluster is assumed to be the interacting K Kbar pair that forms the $\mathrm{f}_{0}(980)$

	single	full	full $+\Gamma_{\rho}$	PDG [38]
Mass (MeV)	1777.9	1734.8	1748.0	1720 ± 20
Width (MeV)	144.4	63.7	160.8	250 ± 100

Pseudotensor mesons as three body resonances

Luis Roca, Phys.Rev. D84(2011) 094006

Systems with $J^{P C}=2^{-+}$can be regarded as molecules made of a pseudoscalar $(P) 0^{-+}$and a tensor 2^{++}meson with the 2^{++}state made out of two vector mesons

assigned resonance	dominant channel	mass PDG [47]	mass, only single scatt.	mass full model
$\pi_{2}(1670$	$\eta a_{2}(1320)$	1672 ± 3	1800	1660
$\eta_{2}(1645)$	$\eta f_{2}(1270)$	1617 ± 5	1795	1695
$K_{2}^{*}(1770)$	$K a_{2}(1320)$	1773 ± 8	1775	1775

The era of charm

States of $\rho D^{*} \bar{D}^{*}$ with $J=3$ within the Fixed Center Approximation to the Faddeev equations

M. Bayar, X. L. Ren, E. O, Eur. Phys. J. A 2015

In the $\mathrm{D}^{*} \mathrm{D}^{*}$ bar interaction one state with $\mathrm{J}^{\mathrm{P}}=2^{+}$is generated around 3920 MeV , which could be the $\mathrm{X}(3915)$ or the $\mathrm{Z}(3940)$ (with I=0)
We let the ρ interact with the $D^{*} D^{*}$ bar cluster and obtain a new state

A state with the $\mathrm{I}=1, \mathrm{~J}=\mathrm{B}^{-}$ and hidden charm is predicted around 4330 MeV .

FIG. 3: Modulus squared of the $\rho\left(D^{*} \bar{D}^{*}\right)$ scattering amplitude with total isospin $I=1$.

A prediction of D^{*}-multi- ρ states

Xiao, Bayar, E. O, PRD 2012

TABLE I: The cases considered in the D^{*}-multi- ρ interactions.

particles:	3	$\mathrm{R}(1,2)$	amplitudes
Two-body	ρ	D^{*}	$t_{\rho D^{*}}$
	ρ	ρ	$t_{\rho \rho}$
Three-body	D^{*}	$f_{2}(\rho \rho)$	$T_{D^{*}-f_{2}}$
	ρ	$D_{2}^{*}\left(\rho D^{*}\right)$	$T_{\rho-D_{2}^{*}}$
Four-body	D_{2}^{*}	$f_{2}(\rho \rho)$	$T_{D_{2}^{*}-f_{2}}$
	f_{2}	$D_{2}^{*}\left(\rho D^{*}\right)$	$T_{f_{2}-D_{2}^{*}}$
Five-body	D^{*}	$f_{4}\left(f_{2} f_{2}\right)$	$T_{D^{*}-f_{4}}$
	ρ	$D_{4}^{*}\left(f_{2} D_{2}^{*}\right)$	$T_{\rho-D_{4}^{*}}$
Six-body	D_{2}^{*}	$f_{4}\left(f_{2} f_{2}\right)$	$T_{D_{2}^{*}-f_{4}}$
	f_{2}	$D_{4}^{*}\left(f_{2} D_{2}^{*}\right)$	$T_{f_{2}-D_{4}^{*}}$

 Mass $2800-2850 \mathrm{MeV}, 3075-3200 \mathrm{MeV}, 3360-3375 \mathrm{MeV}$ and 3775 MeV Width $60-100 \mathrm{MeV}, 200-400 \mathrm{MeV}, 200-400 \mathrm{MeV}$ and 400 MeV

A narrow $D N N$ quasi-bound state

Bayar, Xiao, Hyodo, Dote, Oka, E.O. , PRC 2012

Calculations done with variational method and with FCA
Bound state and narrow around $3500-3530 \mathrm{MeV}, \Gamma=30-40 \mathrm{MeV}$
Could be considered as a $\wedge_{c}(2595) \mathrm{N}$ bound state.
Interesting : Narrower than the Kbar NN system

Conclusions:

The chiral unitary approach for the $f_{0}(500)$ and $f_{0}(980)$ provides a simple and natural explanation of the recent results of LHCb on B_{s}^{0} and B^{0} decays.

Predictions for $\Lambda_{b}->J / \psi \Lambda(1405)$ made prior to LHCb experiment Preditions for D^{*} bar Σ_{c} and D^{*} bar $\Sigma^{*}{ }_{c}$ bound states also made before The combination of both matches recent findings of experiment

The recent finding should stimulate the search for many other multiquark multihadron states predicted by theoretical groups.

FIG. 5: (Color online) Invariant mass distribution for $\pi^{+} \pi^{-}$ in $\bar{B}^{0} \rightarrow D^{0} \pi^{+} \pi^{-}$decay. The experimental data are taken from Ref. [29].

I=1 hidden charm resonances, $Z_{c}(3900)$ and $Z_{c}(4020)$

$P=\left(\begin{array}{cccc}\frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}}+\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} & K^{+} & \bar{D}^{0} \\ \pi^{-} & \frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}}-\frac{\pi^{0}}{\sqrt{2}} & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}}+\sqrt{\frac{2}{3} \eta^{\prime}} & D_{s}^{-} \\ D^{0} & D^{+} & D_{s}^{+} & \eta_{c}\end{array}\right)$

$$
V_{\mu}=\left(\begin{array}{cccc}
\frac{\omega}{\sqrt{2}}+\frac{\rho^{0}}{\sqrt{2}} & \rho^{+} & K^{*+} & \bar{D}^{* 0} \\
\rho^{-} & \frac{\omega}{\sqrt{2}}-\frac{\rho^{0}}{\sqrt{2}} & K^{* 0} & D^{*-} \\
K^{*-} & \bar{K}^{* 0} & \phi & D_{s}^{*-} \\
D^{* 0} & D^{*+} & D_{s}^{*+} & J / \psi
\end{array}\right)_{\mu} .
$$

We study them as D D*bar and D* D*bar molecules

$$
\mathcal{L}_{V P P}=-i g\left\langle V^{\mu}\left[P, \partial_{\mu} P\right]\right\rangle
$$

The exchange of a light meson is OZI forbidden. This means ρ, ω cancel and π, η, η^{\prime} cancel if equal masses (or for large q)

Then we exchange two pions with or without interactions

Plus heavy vector (J/psi, D*)
We find the heavy vector exchange still dominates but the interaction has a weak strenght.

F, Aceti, M.Bayar, J.M. Dias, A. Martinez, K. Khemchandani, M. Nielsen, F. Navarra, EO PRD2014

FIG. 12 (color online). $\quad|T|^{2}$ as a function of \sqrt{s} for values of the cutoff $q_{\text {max }}$ equal to $850,800,770,750$, and 700 MeV . The peak moves to the left as the cutoff increases.

Prediction of a $Z_{c}(4000) D^{*} \bar{D}^{*}$ state and relationship with the claimed $\mathbf{Z}_{\mathrm{c}}(4025)$ F. Aceti ${ }^{1, \mathrm{a}}$, M. Bayar ${ }^{1,2}$, J.M. Dias ${ }^{1,3}$, and E. Oset ${ }^{1}$

Fig. 16. $\left|T_{11}\right|^{2}$ as a function of \sqrt{s}, for different values of the cutoff $q_{\max }$. From up down, $q_{\max }=960,900,850,800,750$, $700,650,600,550,500 \mathrm{MeV}$.

