Structure of exotic compounds

E. Oset, IFIC, Universidad de Valencia- CSIC

A bit of chiral dynamics

 B^0 and B^0_s weak decays into J/psi and $f_0(500)$, $f_0(980)$

Predictions for $\Lambda_h \rightarrow J/\psi k^- p$ and $J/\psi \Lambda(1405)$

Predictions for hidden charm baryon states

Comparison with the J/ ψ p and K⁻ p spectra of recent LHCb pentaquark experiment

Exotic states: multirho states, K* multirho, D* multirho, pseudotensor mesons, rho K Kbar, rho D* D*bar, D NN

Meson interaction

Pseudoscalar-pseudoscalar interaction: channels

- π⁺ π⁻
- π⁰ π⁰
- K⁺ K⁻
- 4) K⁰ Kbar⁰
- 5) դղ

We use the chiral unitary approach: Bethe Salpeter equations in coupled channels $T=(1-VG)^{-1}V$

With V obtained from the chiral Lagrangians and G the loop function of two meson propagators .

$$G_{jj}(s) = \int_0^{q_{max}} \frac{q^2 dq}{(2\pi)^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2 [P^{02} - (\omega_1 + \omega_2)^2 + i\epsilon]}$$

$$V_{11} = -\frac{1}{2f^2}s, \qquad V_{12} = -\frac{1}{\sqrt{2}f^2}(s - m_\pi^2), \qquad V_{13} = -\frac{1}{4f^2}s, V_{14} = -\frac{1}{4f^2}s, \qquad V_{15} = -\frac{1}{3\sqrt{2}f^2}m_\pi^2, \qquad V_{22} = -\frac{1}{2f^2}m_\pi^2, V_{23} = -\frac{1}{4\sqrt{2}f^2}s, \qquad V_{24} = -\frac{1}{4\sqrt{2}f^2}s, \qquad V_{25} = -\frac{1}{6f^2}m_\pi^2, \qquad (8) V_{33} = -\frac{1}{2f^2}s, \qquad V_{34} = -\frac{1}{4f^2}s, \qquad V_{35} = -\frac{1}{12\sqrt{2}f^2}(9s - 6m_\eta^2 - 2m_\pi^2), V_{44} = -\frac{1}{2f^2}s, \qquad V_{45} = -\frac{1}{12\sqrt{2}f^2}(9s - 6m_\eta^2 - 2m_\pi^2), \qquad V_{55} = -\frac{1}{18f^2}(16m_K^2 - 7m_\pi^2),$$

Oset, Ramos NPA98

Coupled channels:

 K^-p , \bar{K}^0n , $\pi^0\Lambda$, $\pi^0\Sigma^0$, $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\eta\Lambda$, $\eta\Sigma^0$, $K^0\Xi^0$ and $K^+\Xi^-$

$$\begin{aligned} T &= [1 - VG]^{-1}V \\ & \times \frac{1}{k^0 + p^0 - q^0 - E_i(\vec{q}\,) + i\epsilon} \frac{1}{q^2 - m_i^2 + i\epsilon} \end{aligned}$$

$$\begin{split} V_{ij}(\sqrt{s}) &= -C_{ij} \frac{1}{4f^2} (2\sqrt{s} - M_i - M_j) \\ &\times \left(\frac{M_i + E_i}{2M_i}\right)^{1/2} \left(\frac{M_j + E_j}{2M_j}\right)^{1/2}, \end{split}$$

$$C_{ij} = \begin{pmatrix} 3 & -\sqrt{\frac{3}{2}} \\ -\sqrt{\frac{3}{2}} & 4 \end{pmatrix} \quad \text{for I=0}$$

Channels Kbar N , $\pi\Sigma$,

Oset, Ramos NPA98

Coupled channels:

 K^-p , \bar{K}^0n , $\pi^0\Lambda$, $\pi^0\Sigma^0$, $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\eta\Lambda$, $\eta\Sigma^0$, $K^0\Xi^0$ and $K^+\Xi^-$

 B^0 and B^0_s decays into $J/\psi \ f_0(980)$ and $J/\psi \ f_0(500)$ and the nature of the scalar resonances

Much debate on recent LHCb experiments (see S. Stone, L. Zhang, PRL 2013)

In $B_{s}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$, a big peak is seen for $f_{0}(980)$, and no signal for $f_{0}(500)$. LHCb PLB 2011, PRD 2012 Corroborated by Belle, CDF, D0 collaborations.

Conversely, in B⁰ -> J/ $\psi \pi^+\pi^-$ the f₀(500) is seen and only a tiny signal for the f₀(980) is observed , LHCb PRD 2013.

 B^0 and B^0_{\circ} decays into $J/\psi f_0(980)$ and $J/\psi f_0(500)$ and the nature of the scalar resonances W.H. Liang, EO PLB 2014 $d = \bar{B}_s^0 \xrightarrow{b} W$ \bar{B}^0 (a) $M = \begin{pmatrix} u\bar{u} & ud & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ c\bar{u} & c\bar{d} & c\bar{s} \end{pmatrix}$ q $q\bar{q}(u\bar{u}+d\bar{d}+s\bar{s})$ \bar{q} $M \cdot M = M \times (u\bar{u} + dd + s\bar{s})$ $\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ \kappa^{-} & \bar{K}^{0} & -\frac{2}{\bar{E}}\eta \end{pmatrix}$ $d\bar{d}(u\bar{u} + d\bar{d} + s\bar{s}) \equiv (\phi \cdot \phi)_{22}$ $=\pi^{-}\pi^{+}+\frac{1}{2}\pi^{0}\pi^{0}-\frac{1}{\sqrt{2}}\pi^{0}\eta+K^{0}\bar{K}^{0}+\frac{1}{6}\eta\eta,$

$$s\bar{s}(u\bar{u} + d\bar{d} + s\bar{s}) \equiv (\phi \cdot \phi)_{33} = K^{-}K^{+} + K^{0}\bar{K}^{0} + \frac{4}{6}\eta\eta.$$
(4)

$$\begin{split} t(\bar{B}^{0} \to J/\psi\pi^{+}\pi^{-}) \\ &= V_{P}V_{cd} \left(1 + G_{\pi^{+}\pi^{-}t\pi^{+}\pi^{-}\to\pi^{+}\pi^{-}} + \frac{1}{2} \frac{1}{2} G_{\pi^{0}\pi^{0}} t_{\pi^{0}\to\pi^{0}\to\pi^{+}\pi^{-}} \\ &+ G_{K^{0}\bar{K}^{0}} t_{K^{0}\bar{K}^{0}\to\pi^{+}\pi^{-}} + \frac{1}{6} \frac{1}{2} G_{\eta\eta} t_{\eta\eta\to\pi^{+}\pi^{-}} \right), \\ t(\bar{B}^{0}_{s} \to J/\psi\pi^{+}\pi^{-}) \\ &= V_{P}V_{cs} \left(G_{K^{+}K^{-}} t_{K^{+}K^{-}\to\pi^{+}\pi^{-}} \\ &+ G_{K^{0}\bar{K}^{0}} t_{K^{0}\bar{K}^{0}\to\pi^{+}\pi^{-}} + \frac{4}{6} \frac{1}{2} G_{\eta\eta} t_{\eta\eta\to\pi^{+}\pi^{-}} \right), \end{split}$$
(5)

$$\bar{B}^0_s \rightarrow J/\psi \pi^+ \pi^-$$
 decay,

One normalization is arbritary but the two decays share the same normalization

$$\bar{B}^0 \rightarrow J/\psi \pi^+ \pi^-$$
 decay,

$$\frac{\mathcal{B}[\bar{B}^0 \to J/\psi f_0(980), f_0(980) \to \pi^+\pi^-]}{\mathcal{B}[\bar{B}^0 \to J/\psi f_0(500), f_0(500) \to \pi^+\pi^-]} = 0.033 \pm 0.007 \qquad \text{Our result}$$

Exp:
$$(0.6^{+0.7+3.3}_{-0.4-2.6}) \times 10^{-2}$$
 0-0.046

$$\frac{\Gamma(B^0 \to J/\psi f_0(500))}{\Gamma(B^0_s \to J/\psi f_0(980))} \simeq (4.5 \pm 1.0) \times 10^{-2}.$$
 Our result

Exp: $(2.08-4.13) \times 10^{-2}$

Note: all the ratios and the mass distributions are obtained with no free parameters, the only one has been fitted to scattering data.

Predictions for the $\Lambda_b \to J/\psi \Lambda(1405)$ decay

L. Roca, M. Mai, E.Oset and U.G. Meissner, EPJC 2015

$$\mathcal{M}_j(M_{\rm inv}) = V_p\left(h_j + \sum_i h_i G_i(M_{\rm inv}) t_{ij}(M_{\rm inv})\right)$$

$$\begin{aligned} h_{\pi^{0}\Sigma^{0}} &= h_{\pi^{+}\Sigma^{-}} = h_{\pi^{-}\Sigma^{+}} = 0 , \ h_{\eta\Lambda} = -\frac{\sqrt{2}}{3} \\ h_{K^{-}p} &= h_{\bar{K}^{0}n} = 1 , \ h_{K^{+}\Xi^{-}} = h_{K^{0}\Xi^{0}} = 0 , \end{aligned}$$

We have there $J/\psi K^- p$, the final state in the LHCb pentaquark experiment

Note the large deviation from While for J/ ψ p one has essentially Phase space except for the peak

1507.03414

How can the peak in J/ ψ appear? The J/ ψ N interaction is very weak !!

(I,S)	z_R	g_a			
(1/2, 0)		$\bar{D}^*\Sigma_c$	$\bar{D}^* \Lambda_c^+$	$J/\psi N$	
	4415 - 9.5i	2.83 - 0.19i	-0.07 + 0.05i	-0.85 + 0.02i	
		2.83	0.08	0.85	

C W Xiao, J Nieves , E. O, PRD 2013 : $D^*bar \Sigma_c^*$ channel included

4417.04 + i4.11	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	0.53 - i0.07	0.08 - i0.07	2.81 - i8.07	0.12 - i0.10	0.11 - i0.51
$ g_i $	0.53	0.11	2.81	0.16	0.52
4481.04 + i17.38	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	$1.05 \pm i0.10$	0.18 - i0.09	0.12 - i0.10	0.22 - i0.05	2.84 i0.34
$ g_i $	1.05	0.20	0.16	0.22	2.86

It is not trivial that the K⁻ p and J/ ψ p distributions can be related like that

Since D*bar Σ_c is the main channel one should start from this production and then make transition to J/ ψ p, but this configuration is now allowed D*bar Λ_c is allowed

but it is has small strength in the wave function and then is Cabibbo suppressed

This leaves only J/ψ p to initiate the interaction to produce the resonance

The D*bar Σ_c or D*bar Σ_c^* picture endures all tests of experiment: mass and width, spin parity $3/2^-$ acceptable, coupling of resonance to J/ ψ acceptable, nontrivial relation of J/ ψ p and K⁻ p distributions established.

Multirho states:

The vector vector interaction can be studied using the local hidden gauge formalism, Bando et al.

$$\mathcal{L}^{(4V)} = \frac{g^2}{2} \langle V_\mu V_\nu V^\mu V^\nu - V_\nu V_\mu V^\mu V^\nu \rangle , \qquad g = M_v / 2f_\pi$$

$$\mathcal{L}^{(3V)} = ig\langle (V^{\mu}\partial_{\nu}V_{\mu} - \partial_{\nu}V_{\mu}V^{\mu})V^{\nu}\rangle ,$$

$$V^{(I=0,S=2)}(s) = -4g^2 - 8g^2 \left(\frac{3s}{4m_{\rho}^2} - 1\right) \sim -20g^2$$
$$V^{(I=2,S=2)}(s) = 2g^2 + 4g^2 \left(\frac{3s}{4m_{\rho}^2} - 1\right) \sim 10g^2$$

$$T = \frac{V}{1 - VG},$$

$$G(s) = i \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2 - m_{\rho}^2 + i\epsilon} \frac{1}{(Q-p)^2 - m_{\rho}^2 + i\epsilon} ,$$

Rho-rho interaction in the hidden gauge approach

We would like to construct states of many ρ with parallel spins, so as to have maximum binding for any pair

This is like a ferromagnet of ρ mesons

Fixed center approximation to ρf_2 scattering

a)

+

This interaction generates the ρ_3

d)

+

$$T_1 = t_1 + t_1 G_0 T_2$$
$$T_2 = t_2 + t_2 G_0 T_1$$
$$T = T_1 + T_2$$

$$G_0 \equiv \frac{1}{M_{f_2}} \int \frac{d^3 q}{(2\pi)^3} F_{f_2}(q) \frac{1}{q^{0^2} - \vec{q}^2 - m_{\rho}^2 + i\epsilon}$$

$$F_{f_2}(q) = \frac{1}{\mathcal{N}} \int_{\substack{p < \Lambda \\ |\vec{p} - \vec{q}| < \Lambda}} d^3 p \, \frac{1}{M_{f_2} - 2\omega_\rho(\vec{p})} \, \frac{1}{M_{f_2} - 2\omega_\rho(\vec{p} - \vec{q})}$$

where the normalization factor ${\cal N}$ is

$$\mathcal{N} = \int_{p < \Lambda} d^3 p \frac{1}{(M_{f_2} - 2\omega_\rho(\vec{p}))^2}$$

One then continues and makes scattering of f_2 with f_2 to get the f_4 Then ρ interaction with f_4 to give ρ_5 and finally f_2 with f_4 to give f_6

On the nature of the $K_2^*(1430)$, $K_3^*(1780)$, $K_4^*(2045)$, $K_5^*(2380)$ and K_6^* as K^* -multi- ρ states

J. Yamagata-Sekihara¹ L. Roca² and E. Oset¹ Phys.Rev. D82 (2010) 094017

	A	$B(b_1b_2)$
two-body	ρ	K^*
three body	K^*	$f_2 \ (\rho \rho)$
tillee-body	ho	$K_2^*~(\rho K^*)$
four-body	f_2	$K_2^* \ (\rho K^*)$
five body	K^*	$f_4 \ (f_2 f_2)$
nve-body	ho	$K_4^* \ (f_2 K_2^*)$
siy body	K_2^*	$f_4 \ (f_2 f_2)$
SIX-DOUY	f_2	$K_4^* (f_2 K_2^*)$

generated	amplituda	magg DDC [91]	${ m mass}$	\max
resonance	ampirtude	mass, PDG [21]	only single scatt.	full model
$K_2^*(1430)$	$ ho K^*$	1429 ± 1.4	_	1430
$K_3^*(1780)$	K^*f_2	1776 ± 7	1930	1790
$K_4^*(2045)$	$f_2 K_2^*$	2045 ± 9	2466	2114
$K_5^*(2380)$	K^*f_4	$2382 \pm 14 \pm 19$	2736	2310
K_6^*	$K_2^* f_4 - f_2 K_4^*$	—	3073-3310	2661-2698

Description of $\rho(1700)$ as a $\rho K \bar{K}$ system with the fixed center approximation

Bayar, Liang, Uchino and Xiao, EPJA 2014

63.7

160.8

 250 ± 100

Width (MeV) 144.4

The cluster is assumed to be the interacting K Kbar pair that forms the $f_0(980)$

 $|T|^2$

Pseudotensor mesons as three body resonances

Luis Roca, Phys.Rev. D84(2011) 094006

Systems with $J^{PC} = 2^{-+}$ can be regarded as molecules made of a pseudoscalar (P) 0^{-+} and a tensor 2^{++} meson

with the 2⁺⁺ state made out of two vector mesons

assigned	dominant	mass	mass, only	mass
resonance	$\operatorname{channel}$	PDG [47]	single scatt.	full model
$\pi_2(1670)$	$\eta a_2(1320)$	1672 ± 3	1800	1660
$\eta_2(1645)$	$\eta f_2(1270)$	1617 ± 5	1795	1695
$K_2^*(1770)$	$Ka_2(1320)$	1773 ± 8	1775	1775

The era of charm

States of $\rho D^* \overline{D}^*$ with J = 3 within the Fixed Center Approximation to the Faddeev equations

M. Bayar, X. L. Ren, E. O, Eur. Phys. J. A 2015

In the D* D*bar interaction one state with $J^P=2^+$ is generated around 3920 MeV, which could be the X(3915) or the Z(3940) (with I=0)

We let the p interact with the D* D*bar cluster and obtain a new state

FIG. 3: Modulus squared of the $\rho(D^*\bar{D}^*)$ scattering amplitude with total isospin I = 1.

A prediction of D^* -multi- ρ states

Xiao, Bayar, E. O, PRD 2012

particles:	3	R (1,2)	$\operatorname{amplitudes}$
Two-body	ho	D^*	$t_{ ho D^*}$
	ho	ho	$t_{ ho ho}$
Three-body	D^*	$f_2 (\rho \rho)$	$T_{D^*-f_2}$
	ho	$D_2^* \left(\rho D^* \right)$	$T_{\rho-D_2^*}$
Four-body	D_2^*	$f_2 (\rho \rho)$	$T_{D_2^*-f_2}$
	f_2	$D_2^* \ (\rho D^*)$	$T_{f_2 - D_2^*}$
Five-body	D^*	$f_4 \ (f_2 f_2)$	$T_{D^*-f_4}$
	ho	$D_4^* (f_2 D_2^*)$	$T_{\rho-D_4^*}$
Six-body	D_2^*	$f_4 (f_2 f_2)$	$T_{D_2^*-f_4}$
	f_2	$D_4^* (f_2 D_2^*)$	$T_{f_2 - D_4^*}$

TABLE I: The cases considered in the $D^*\mbox{-multi-}\rho$ interactions.

.

A narrow DNN quasi-bound state

Bayar, Xiao, Hyodo, Dote, Oka, E.O., PRC 2012

Calculations done with variational method and with FCA

Bound state and narrow around 3500 -3530 MeV, Γ=30-40 MeV

Could be considered as a $\Lambda_c(2595)$ N bound state.

Interesting : Narrower than the Kbar NN system

Conclusions:

The chiral unitary approach for the $f_0(500)$ and $f_0(980)$ provides a simple and natural explanation of the recent results of LHCb on B_s^0 and B^0 decays.

Predictions for $\Lambda_b \rightarrow J/\psi \Lambda(1405)$ made prior to LHCb experiment Preditions for D*bar Σ_c and D*bar Σ_c^* bound states also made before The combination of both matches recent findings of experiment

The recent finding should stimulate the search for many other multiquark multihadron states predicted by theoretical groups.

FIG. 5: (Color online) Invariant mass distribution for $\pi^+\pi^$ in $\bar{B}^0 \to D^0\pi^+\pi^-$ decay. The experimental data are taken from Ref. [29].

I=1 hidden charm resonances, $Z_c(3900)$ and $Z_c(4020)$

We study them as D D*bar and D* D*bar molecules

$$\mathcal{L}_{VPP} = -ig\langle V^{\mu}[P,\partial_{\mu}P]\rangle$$

Then we exchange two pions with or without interactions

Plus heavy vector (J/psi, D*)

We find the heavy vector exchange still dominates but the interaction has a weak strenght.

F, Aceti, M.Bayar, J.M. Dias, A. Martinez, K. Khemchandani, M. Nielsen, F. Navarra, EO PRD2014

FIG. 12 (color online). $|T|^2$ as a function of \sqrt{s} for values of the cutoff q_{max} equal to 850, 800, 770, 750, and 700 MeV. The peak moves to the left as the cutoff increases.

$\begin{array}{l} \mbox{Prediction of a $Z_c(4000)$ $D^*\bar{D}^*$ state and relationship with the claimed $Z_c(4025)$ $F. Aceti^{1,a}$, M. Bayar^{1,2}$, J.M. Dias^{1,3}$, and E. Oset^1$ \\ \end{array}$

PRD2014

Fig. 16. $|T_{11}|^2$ as a function of \sqrt{s} , for different values of the cutoff q_{max} . From up down, $q_{\text{max}} = 960, 900, 850, 800, 750, 700, 650, 600, 550, 500 \text{ MeV}$.