Overview of STAR's Results of Anti/Hyper/Exotic-matter Measurements

Aihong Tang for STAR Collaboration

Outline

- Advantages of RHIC/STAR
- STAR's programs of anti/hyper/exotic-matter study
- Summary

RHIC is Flexible

C.M. Energy per nucleon pair (GeV)	Collision Species
500/150	Polarized p+p
200	Polarized p+p, Au+Au, d+Au, Cu +Cu,Cu+Au, p+Au, He3+Au, p+Al
193	U+U
62.4	Polarized p+p, Au+Au, Cu+Cu
22.4	Cu+Cu
7.7,9.2,11.5,14.5,19.6,22.4,27, 39,130	Au + Au

RHIC is Bright

- Annual integrated luminosity p+p equivalent: ~ 0.1 fb⁻¹
- Au+Au collisions to tape in 2014 : STAR : ~ 5 billion
- Annual particles to tape: > 10¹²

RHIC is Exotic/Antimatter-rich 100 cm

STAR, Science 328, 58 (2010)

STAR, *Nature* **473**, 353 (2011)

STAR : Uniform and Large Acceptance

STAR : Excellent PID and Tracking

Charged hadrons

Hyperons & Hyper-nuclei

Neutral particles

Jets & Correlations

High pT muons

Heavy-flavor hadrons

HFT

Efforts at STAR

Understand the Y-N interaction

(anti)hypertriton lifetime, 3-body decay

Push the boundary of standard model

Strangelets and Dibaryons

Understand the fundamental force that binds antinuclei

Measurement of interaction between antiprotons

Atom/parton chemistry

- Muonic Atoms
- Glueball

(anti)hypertriton : previous result

$$^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$$

 $^{3}_{\overline{\Lambda}}\overline{H} \rightarrow ^{3}\overline{H}e + \pi^{+}$

(anti)hypertriton : improved lifetime measurement with large statistics

A precise determination of the lifetime of hypernuclei provides direct information on the YN interaction strength.

(anti)hypertriton : 3-body decay

 $_{\Lambda}^{3}H \rightarrow d + p + \pi^{-}$

- v012 : Mid-point of DCA 1 to 2
- v023 : Mid-point of DCA 2 to 3
- v013 : Mid-point of DCA 1 to 3
- v0123 : Centre of gravity of the triangle

Ongoing effort of reconstructing (anti)hypertriton via 3-body decay

Strange Quark Matter

The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty

The H ⁰ -Dibaryon	
Strangelet	Hadronic Counterpart
6 quark-bag bound state (uuddss)	(ΛΛ) _b
m _{H0} <2m _∧ =2231 MeV	Other dibaryons might exist as bound
Stable against strong decay but not against weak hadronic decay	states made by coalescence of 2 strange baryons (Schaffner-Bielich et al PRL 84 (2000))
т = 10 ⁻⁸ -10 ⁻¹⁰ s (R. Jaffe PRL 38 195 (1977), Donoghue'86 …)	Decay length ~ 1-5cm
Decay mode :	$(\Lambda\Lambda)_{b} \rightarrow \Lambda + p + \pi \begin{cases} dN/dy \sim 10^{-2} - 10^{-3}/event \\ \rightarrow \Sigma^{-} + p \end{cases}$
NΣΛΝπMass threshold (MeV)213421922231	$ \begin{array}{c} (\Sigma^{+}p)_{b} \rightarrow p + p \\ (\Xi^{0}p)_{b} \rightarrow \Lambda + p \\ (\Xi^{0}\Lambda)_{b} \rightarrow \Lambda + \Lambda \\ \rightarrow \Xi^{-} + p \end{array} \right\} dN/dy \sim 10^{-3}/event $
Aibong Tang, CER	N July 19-23 2015 13

Previous Search for Strangelet, in Forward Region

STAR, PRC 76, 011901 (2007)

Search for H⁰-Dibaryon at midrapidity

Hyperon-Hyperon interaction is one of the key quantities to understand the dense matter EOS, of interest to astrophysicists

Search for H⁰-Dibaryon at midrapidity

 $\Lambda\Lambda$ interaction parameters measured. The sign of effective range $(d_0 = r_{eff})$ and scattering length $(f_0 = -a_0)$ indicates no existence of a $\Lambda\Lambda$ resonance saturating the s-wave .

• Understanding the force between nucleons is a necessary step for understanding the structure of nuclei and how nuclei interact with each other

• Not much is known about the nuclear force between antinucleons.

• The knowledge of interaction among two antiprotons, one of the simplest systems of antinucleons, is a fundamental ingredient for understanding the structure of more complex antinuclei and their properties.

Force between two antiprotons is attractive. Correlation Function similar to that of proton-proton.

 f_0 and d_0 reported. They are two key parameters for characterizing the strong force between two antinucleons.

Potential discovery of new atoms

p⁺-μ⁻ *K*⁺-μ⁻ π⁺-μ⁻ anti-p-μ⁺ *K*⁻-μ⁺ π⁻-μ⁺

Muonic Atoms : Yield estimation at STAR

Dissociation at the beam pipe

Sharp peaks observed at the signal region.

Signature of muonic atom's dissociation : two particles are emitted at the same position and time

Glueball Search with Roman Pots at STAR

Roman Pots were operated in run 2015 allowing for a rich physics program with tagged forward protons in polarized p+p scattering and proton nucleus collisions at RHIC

Summary

The study of exotic, anti/hyper-matter expands RHIC's research horizon.

• RHIC (LHC too) is an ideal machine for exotic, anti/ hyper-matter production.

 STAR has made important discoveries, and continues to have vigorous programs to study exotic, anti/hypermatter.

$$C(\mathbf{k}^{*}) = \frac{\sum_{pairs} \delta(\mathbf{k}_{pair}^{*} - k^{*})w(\mathbf{k}^{*}, \mathbf{r}^{*})}{\sum_{pairs} \delta(\mathbf{k}_{pairs}^{*} - \mathbf{k}^{*})}, \text{ where}$$

$$P(\mathbf{k}^{*}, \mathbf{r}^{*}) = |\psi_{-\mathbf{k}^{*}}^{S(+)}((\mathbf{r}^{*}) + (-1)^{S}\psi_{\mathbf{k}^{*}}^{S(+)}(\mathbf{r}^{*})|^{2}/2, \text{ and}$$

$$P_{-\mathbf{k}^{*}}^{S(+)}(\mathbf{r}^{*}) = e^{i\delta_{c}}\sqrt{A_{c}(\eta)}[e^{-i\mathbf{k}^{*}\mathbf{k}^{*}}F(-i\eta, 1, i\xi) + f_{c}(k^{*})\frac{\widetilde{G}(\rho,\eta)}{r^{*}}]$$

$$P_{c}(k^{*}) = [\frac{1}{f_{0}} + \frac{1}{2}d_{0}k^{*2} - \frac{2}{a_{c}}h(\eta) - ik^{*}A_{c}(\eta)]^{-1} \text{ is the}$$
-wave scattering amplitude renormalized by Coulomb interaction.

$$\eta = (k^{*}a_{c})^{-1}, a_{c} = (57.5 \text{ fm}) + e^{-ik^{*}\mathbf{r}^{*}}, \xi = \mathbf{k}^{*}\mathbf{r}^{*} + \rho,$$

$$A_{c}(\eta) = 2\pi\eta[\exp(2\pi\eta) - 1]^{-1}$$

Aihong Tang, CERN, July 19-23 2015 theoretical C(k*)

28

F is the confluent hypergeometric function

 $\widetilde{G}(
ho,\eta)=\sqrt{A_c(\eta)[G_0(
ho,\eta)+iF_0(
ho,\eta)]}$ is a

combination of the regular (F_0) and singluar (G_0) s-wave Coulomb functions. Proton pairs

are from THERMINATOR2 when deriving

Search for H⁰-Dibaryon at midrapidity

$$C(Q) = N \left[1 + \lambda \left(-\frac{1}{2} \exp(-r_0^2 Q^2) + \frac{1}{4} \frac{|f(k)|^2}{r_0^2} \left(1 - \frac{1}{2\sqrt{\pi}} \frac{d_0}{r_0} \right) \right] \\ + \frac{\operatorname{Re}f(k)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\operatorname{Im}f(k)}{2r_0} F_2(Qr_0) \\ + a_{\operatorname{res}} \exp(-r_{\operatorname{res}}^2 Q^2) \right],$$

$$k = Q/2$$

$$f(k) = \left(\frac{1}{f_0} + \frac{1}{2} \frac{d_0}{k^2} - ik \right)^{-1}$$

$$F_1(z) = \int_0^1 e^{x^2 - z^2} / z dx$$

$$F_2(z) = (1 - e^{-z^2}) / z$$

No existence of a $\Lambda\Lambda$ resonance