

Tetraquarks in a Bethe-Salpeter approach

Gernot Eichmann

University of Giessen, Germany

EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC CERN. July 21, 2015 thanks to:
Christian Fischer
Walter Heupel

Outline

- Introduction
- Some background:
 Dyson-Schwinger & Bethe-Salpeter equations, applications to mesons and baryons
- Tetraquarks as meson-meson / diquark-antidiquark systems
 Heupel, GE, Fischer, PLB 718 (2012)
- Tetraquarks as four-quark systems
 Heupel, GE, Fischer, in preparation
- Summary

QCD Lagrangian:
$$\mathcal{L} = \bar{\psi}(x) \left(i \partial \!\!\!/ + g A \!\!\!\!/ - M \right) \psi(x) - \frac{1}{4} F_{\mu\nu}^a F_a^{\mu\nu}$$

if it were only that simple...
 we don't measure guarks and gluons, but hadrons

mesons

baryons

glueballs?

hybrids?

tetraquarks?

pentaquarks?

 Growing evidence for four-quark states in charmonium & bottomonium spectrum: X(3872), Y(4260), charged Z states, ...

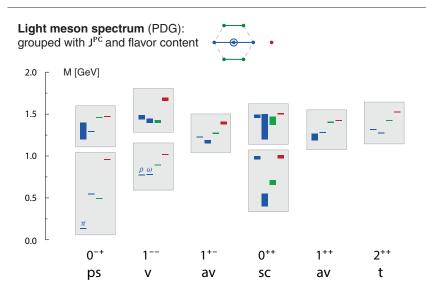
Swanson, PLB 588 (2004), Godfrey 0910.3409, Szczepaniak 1110.0647, Brambilla et al., EPJ C71 (2011) & EPJ C74 (2014), Olsen, Front. Phys. 10 (2015)

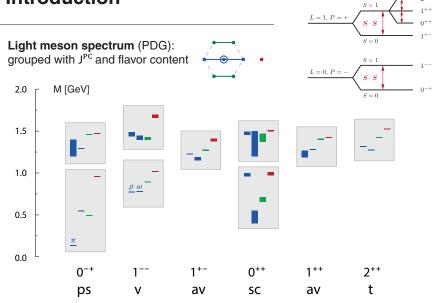
compact tetraquark

diquarkantidiquark

meson molecule

'hadroquarkonium'





 $L \cdot S$

L = 1, P = +S = 0Light meson spectrum (PDG): grouped with JPC and flavor content S = 1L = 0, P = -2.0 M [GeV] S = 01.5 1.0 $\rho \omega$ 0.5 0.0

av

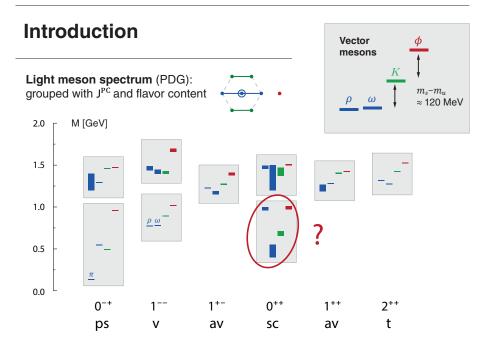
SC

av

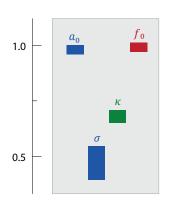
ps

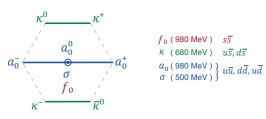
 $L \cdot S$

S = 1



But **light scalar** (0⁺⁺) **mesons** don't fit into the conventional meson spectrum:





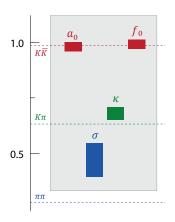
- Why are a_0 , f_0 mass-degenerate?
- Why are their decay widths so different?

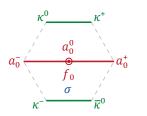
$$\Gamma(\sigma, \kappa) \approx 550 \text{ MeV}$$

 $\Gamma(a_0, f_0) \approx 50-100 \text{ MeV}$

Why are they so light?
 Scalar mesons ~ p-waves, should have masses similar to axialvector & tensor mesons ~ 1.3 GeV

What if they were tetraquarks (diquark-antidiquark)? Jaffe 1977, Close, Tornqvist 2002, Maiani, Polosa, Riquer 2004





 $\begin{array}{c} f_0 \, (\, 980 \, \mathrm{MeV} \,) \\ a_0 \, (\, 980 \, \mathrm{MeV} \,) \end{array} \} \, \begin{array}{c} us\overline{us}, \ldots \\ \kappa \, (\, 800 \, \mathrm{MeV} \,) \end{array} \, \begin{array}{c} us\overline{ud}, \ldots \\ \sigma \, (\, 500 \, \mathrm{MeV} \,) \end{array} \, \begin{array}{c} us\overline{ud}, \ldots \\ ud\overline{ud} \end{array}$

- Explains mass ordering: f_0 , a_0 have two strange quarks
- Explains **decay widths**: f_0 and a_0 couple to $K\overline{K}$, large widths for σ , κ

- Alternative: meson molecules?
 Weinstein, Isgur 1982, 1990, Close, Isgur, Kumano 1993
- Large Nc, unitarized ChPT, quark models, ELSM, ...

Pelaez 2004, Weinberg 2013, Cohen, Llanes-Estrada, Pelaez, Ruiz de Elvira 2014, Londergan, Nebreda, Pelaez, Szczepaniak 2013, Giacosa 2006, Parganlija, Giacosa, Rischke 2010, . . .

• Extract hadron properties from **poles** in $q\bar{q}$, qqq, $qq\bar{q}q$ **scattering matrices**:

• defines onshell Bethe-Salpeter amplitude. Simplest example: pion

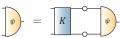
$$\psi(q,P) = \gamma_5 \left(f_1 + f_2 \not \!\! P + f_3 \not \!\! q + f_4 \not \!\! q + f_4 \not \!\! P \right) \otimes \mathsf{Color} \otimes \mathsf{Flavor}$$

most general Dirac-Lorentz structure, Lorentz-invariant dressing functions:

$$f_i = f_i(q^2, q \cdot P, P^2 = -m^2)$$

pion is made of **s waves** and **p waves!**(relative momentum ~ orbital angular momentum)

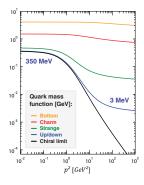
 Use scattering equation (inhomogeneous BSE) to obtain T in the first place: T = K + K G₀ T



Kernel is closely related to quark Dyson-Schwinger equation:

 Dynamical breaking of chiral symmetry generates "constituent- quark masses"

$$S_0(p) = \frac{-i \not p + m}{p^2 + m^2} \ \longrightarrow \ S(p) = \frac{1}{A(p^2)} \frac{-i \not p + M(p^2)}{p^2 + M^2(p^2)}$$



Kernel is closely related to quark Dyson-Schwinger equation:

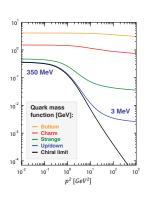
$$-0$$

$$K = \frac{1}{66} \alpha(k^2)$$

 Dynamical breaking of chiral symmetry generates "constituent- quark masses"

$$S_0(p) = \frac{-i \not p + m}{p^2 + m^2} \ \longrightarrow \ S(p) = \frac{1}{A(p^2)} \frac{-i \not p + M(p^2)}{p^2 + M^2(p^2)}$$

- Vector & axial symmetries automatically preserved:
 - ⇒ Goldstone theorem, massless pion in γL
 - ⇒ em. current conservation
 - ⇒ Goldberger-Treiman

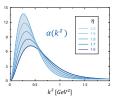


Rainbow-ladder:

tree-level vertex + effective coupling

$$\alpha(k^2) = \alpha_{\rm IR}(\frac{k^2}{\Lambda^2}, \eta) + \alpha_{\rm UV}(k^2)$$

Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999)



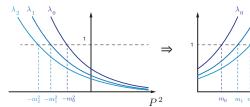
Adjust scale Λ to observable, keep width η as parameter

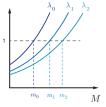
BS amplitude makes only sense onshell, but homogeneous BSE = eigenvalue equation, can be solved for offshell momenta:

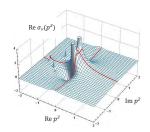
$$\psi$$
 = K ψ

$$K \psi_i = \lambda_i(P^2) \psi_i$$
, $\lambda_i \xrightarrow{P^2 \longrightarrow -m_i^2} 1$

Largest eigenvalue ⇔ ground state, smaller ones ⇔ excitations







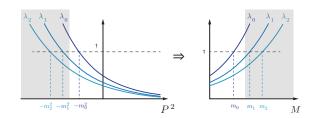
- Restricted by singularity structure in quark propagator (but no physical threshold!): mesons: $M < 2m_p$, baryons: $M < 3m_p$, $m_p \sim 500 MeV$
- ⇒ include residues (numerically difficult) or extrapolate eigenvalue

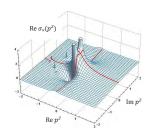
 BS amplitude makes only sense onshell, but homogeneous BSE = eigenvalue equation, can be solved for offshell momenta:

$$\psi$$
 = K ψ

$$K \psi_i = \lambda_i(P^2) \psi_i$$
, $\lambda_i \xrightarrow{P^2 \longrightarrow -m_i^2} 1$

• Largest eigenvalue ⇔ ground state, smaller ones ⇔ excitations



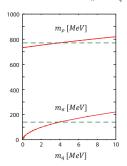


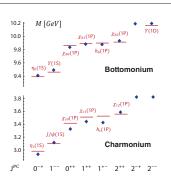
- Restricted by singularity structure in **quark propagator** (but no **physical threshold!**): mesons: $M < 2m_p$, baryons: $M < 3m_p$, $m_p \sim 500 MeV$
- ⇒ include residues (numerically difficult) or extrapolate eigenvalue

Mesons

Bainbow-ladder works well for pseudoscalar & vector mesons: masses, form factors, decays, ... Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999); Bashir et al., Commun. Theor. Phys. 58 (2012)

Pion is Goldstone boson. satisfies GMOR: $m_{\pi}^2 \sim m_a$





Heavy mesons

Blank, Krassnigg, PRD 84 (2011). Hilger et al., PRD 91 (2015), Fischer, Kubrak, Williams, FPI A 51 (2015)

- exp calc

- Rainbow-ladder good for 's-wave' dominated states
- Need to go beyond rainbow-ladder for scalar & axialvector mesons, excited states, η - η' , ... Fischer, Williams & Chang, Roberts, PRL 103 (2009)

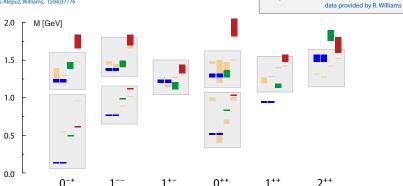
Alkofer et al., EPJ A38 (2008),

e.g. σ meson: 600-700 MeV in RL

Mesons

Light meson spectrum beyond rainbow-ladder:

Sanchis-Alepuz, Williams, 1504.07776



- Gluon propagator & three-gluon vertex consistent with QCD, quark-gluon vertex solved in the process.
 No need for model interaction!
- Radial excitations and exotics now in the right ballpark.
 Scalars?

Exp.

BSE

Baryons

 Covariant Faddeev equation for barvons: keep 2-body interactions & rainbow-ladder, but no further approximations: $M_N = 0.94 \, \mathrm{GeV}$

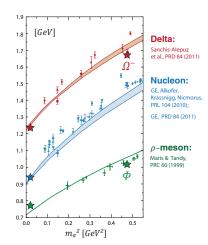
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010). GE, PRD 84 (2011). Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)

Baryon form factors:

nucleon and Δ FFs. $N \rightarrow \Delta \nu$ transition GE, PRD 84 (2011), Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013), Alkofer, GE, Sanchis-Alepuz, Williams, 1412.8413

· Scattering amplitudes:

Compton scattering GF & Fischer, PRD 85 (2012) & PRD 87 (2013) hadronic light-by-light for muon g-2 GE, Fischer, Heunel 1505,06336



Use quark-diquark model as template:

Assumption: separable qq scattering matrix ⇒
Faddeev equation simplifies to quark-diquark BSE



Oettel, Hellstern, Alkofer, Reinhardt, PRC 58 (1998), Cloet, GE, El-Bennich, Klahn, Roberts, Few Body Syst. 46 (2009)

- Quark exchange between quark & diquark binds nucleon
- All quark and diquark properties calculated from quark level, same rainbow-ladder interaction:

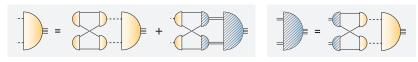
scalar diquark ~ 800 MeV, axialvector diquark ~ 1 GeV

 N and ∆ masses & form factors very similar: quark-diquark model is good approximation for three-body equation

Nucleon and Δ electromagnetic FFs, $N\to\Delta\pi$ decay, $N\to\Delta\gamma$ transition GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009), Nicmorus, GE, Alkofer, PRD 82 (2010), Mader, GE, Blank, Krassnigg, PRD 84 (2011), GE, Nicmorus, PRD 85 (2012)

Use quark-diquark model as template:

Assumption: separable qq, qq̄ scattering matrices ⇒
 coupled diquark-antidiquark / meson-meson equations: Heupel, GE, Fischer, PLB 718 (2012)



- Quark exchange between mesons and diquarks binds tetraquark
- Coupled equations can be contracted into single meson-meson equation, where diguarks appear only internally (not vice versa!)
 - ⇒ meson molecule with diquark-antidiquark admixture!

So far:

- 0⁺⁺, isoscalar, 4 identical guarks: nnnn, ssss, cccc,
- keep only pseudoscalar meson and scalar diquark, calculated in rainbow-ladder

Use quark-diquark model as template:

Assumption: separable qq, qq̄ scattering matrices ⇒
 coupled diquark-antidiquark / meson-meson equations: Heupel, GE, Fischer, PLB 718 (2012)

- Quark exchange between mesons and diquarks binds tetraquark
- Coupled equations can be contracted into single meson-meson equation, where diguarks appear only internally (not vice versa!)
 - ⇒ meson molecule with diquark-antidiquark admixture!

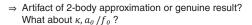
So far:

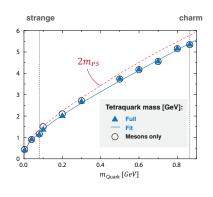
- 0⁺⁺, isoscalar, 4 identical guarks: nnnn, ssss, cccc,
- keep only pseudoscalar meson and scalar diquark, calculated in rainbow-ladder

Tetraquark masses:

Heupel, GE, Fischer, PLB 718 (2012)

- up/down: $m \sim 400 \text{ MeV} \Leftrightarrow \sigma/f_0 (500)$?
- The σ is so light because it 'feels'
 Goldstone nature of the pion diquarks completely irrelevant!
- Resolves problem with diquark-antidiquark interpretation: '2 x 800 MeV - binding energy' ~ 500 MeV?!
- All-strange tetraquark: $m \sim 1.2 \text{ GeV}$ all-charm tetraquark: $m \sim 5.3 \text{ GeV}$ (below $2\eta_c$ threshold)





Start from four-quark bound-state equation:

Two-body interactions:

- K ⊗ I + I ⊗ K K ⊗ K structure necessary to prevent overcounting in T-matrix T = K + K G₀ T
 Kvinikhidze & Khvedelidze, Theor, Math, Phys. 90 (1992)
- plus permutations:
 (qq)(qq̄), (qq̄)(qq̄), (qq̄)(qq̄)
 (12)(34) (23)(14) (13)(24)

Keep two-body interactions with rainbow-ladder kernel: well motivated by many other studies, tetraquark is **s-wave**

Three-body interactions (+ permutations)

Four-body interactions

General structure of **Bethe-Salpeter amplitude** $\Gamma(p,q,k,P)$ complicated:

$$\Gamma(p,q,k,P) = \sum_{i} f_i(p^2,q^2,k^2,\dots) \qquad \tau_i(p,q,k,P)$$

256 Dirac-

Lorentz tensors

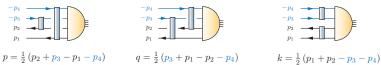
2 Color tensors

Flavor

 $3 \otimes \overline{3}$, $6 \otimes \overline{6}$ or $1 \otimes 1$, $8 \otimes 8$ (Fierz-equivalent)

 $P = p_1 + p_2 + p_3 + p_4$

's channel'



'u channel'

$$x = \frac{1}{2} \left(p_1 + p_2 - p_3 - p_4 \right)$$

't channel'

General structure of **Bethe-Salpeter amplitude** $\Gamma(p,q,k,P)$ complicated:

$$\Gamma(p,q,k,P) = \sum_{i} f_i(p^2,q^2,k^2,\dots) \qquad \tau_i(p,q,k,P)$$

256 Dirac-Lorentz tensors 2 Color tensors

Flavor

 $3 \otimes \overline{3}$, $6 \otimes \overline{6}$ or $1 \otimes 1$, $8 \otimes 8$

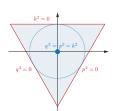
(Fierz-equivalent)

Arrange Lorentz invariants into multiplets of permutation group S4:

GE, Fischer, Heupel, 1505,06336

$$\Rightarrow f_i(\mathcal{S}_0, \nabla, \diamondsuit, \bigcirc)$$

- Singlet: $S_0 = \frac{1}{4}(p^2 + q^2 + k^2)$
- **Doublet:** $\mathcal{D}_0 = \frac{1}{4S_0} \begin{bmatrix} \sqrt{3}(q^2 p^2) \\ p^2 + q^2 2k^2 \end{bmatrix}$
- 2 Triplets: (),



Keep s waves only:

Fierz-complete. 16 tensors:

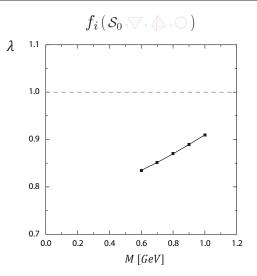
e.g.
$$\left\{ egin{aligned} C^T\gamma_5\otimes\gamma_5C \ C^T\gamma^\mu\otimes\gamma^\mu C \ & \ddots & \end{aligned}
ight\}$$
 in (12)(34)

automatically includes also $\gamma_5 \otimes \gamma_5$ in (23)(14), (31)(24)

Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$K\,\psi_i = \lambda_i(P^2)\,\psi_i\,,$$

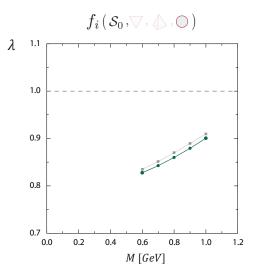
$$\lambda_i \xrightarrow{P^2 \longrightarrow -M_i^2} 1$$



Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$K\,\psi_i = \lambda_i(P^2)\,\psi_i\,,$$

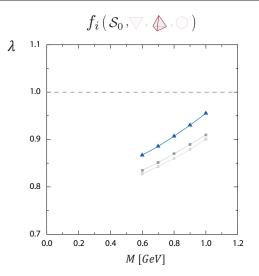
$$\lambda_i \xrightarrow{P^2 \longrightarrow -M_i^2} 1$$



Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$K \psi_i = \lambda_i(P^2) \psi_i \,,$$

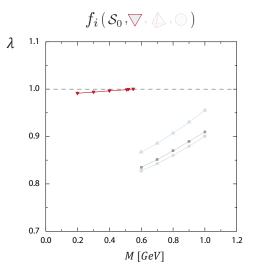
$$\lambda_i \xrightarrow{P^2 \longrightarrow -M_i^2} 1$$



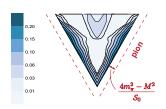
Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$K \psi_i = \lambda_i(P^2) \psi_i \,,$$

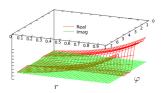
$$\lambda_i \xrightarrow{P^2 \longrightarrow -M_i^2} 1$$



Pion poles in $f_i(\mathcal{S}_0, \nabla, \triangle, \bigcirc)$



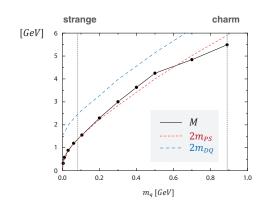
Gap in Mandelstam triangle due to **pion poles**, diquarks far away ⇒ irrelevant



- Four-body equation dynamically generates pion poles outside the integration domain, although equation knows nothing about pions
- drive tetraquark mass from 1.4 GeV to ~500 MeV
- \bullet Poles enter integration domain above threshold $M>2m_\pi$: the tetraquark becomes a resonance

 Four-quark equation produces bound state together with its decay channels!

Tetraquark mass



Evolution with current-quark mass:

Resonance close to $\pi\pi$ threshold, becomes bound state in charm region

Same pattern for multiplet partners:

$$\sigma \sim$$
 380 MeV, $\kappa \sim$ 700 MeV, $a_0/f_0 \sim$ 920 MeV

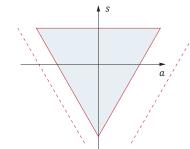
Outlook?

Diquarkantidiquark:

 $(\mathbf{n} c) (\mathbf{\bar{n}} \bar{c})$

Hadrocharmonium:

 $(\boldsymbol{n}\,\bar{\boldsymbol{n}})\,(c\,\bar{c})$



Molecule:

 $(\bar{n} c) (n \bar{c})$

Summary

- Two-body and four-body equations give consistent results, suggest light scalar mesons are tetraquarks
- $\sigma \sim$ 380 MeV, $\kappa \sim$ 700 MeV, $a_0/f_0 \sim$ 920 MeV
- Dominated by pseudoscalar Goldstone bosons, diquarks irrelevant: 'meson molecule' (but resonance)
- Extract widths?
 Maybe, not sure yet (look for poles in complex plane)
- Tetraquarks in heavy-quark regime?
 Maybe, but rainbow-ladder problematic for heavy-light systems
- First solution of genuine four-quark BSE (which is also a resonance!)

Backup slides

Bethe-Salpeter amplitude $\Gamma(p, q, k, P)$ depends on four independent momenta:

$$q = \frac{1}{2} (p_3 + p_1 - p_2 - p_4)$$

'u channel'

$$P = p_1 + p_2 + p_3 + p_4$$

$$k = \frac{1}{2} \left(p_1 + p_2 - p_3 - p_4 \right)$$
 't channel'

General structure guite complicated:

$$\Gamma(p,q,k,P) = \sum_i f_i\left(p^2,q^2,k^2,\{\omega_j\},\{\eta_j\}\right) \tau_i(p,q,k,P)$$
9 Lorentz invariants: 256
$$p^2, \quad q^2 \quad k^2$$
Dirac-

$$p^{2}, q^{2}, k^{2}$$

 $\omega_{1} = q \cdot k \quad \eta_{1} = p \cdot P$
 $\omega_{2} = p \cdot k \quad \eta_{2} = q \cdot P$
 $\omega_{3} = p \cdot q \quad \eta_{3} = k \cdot P$

$$3 \otimes \overline{3}$$
, $6 \otimes \overline{6}$ or $1 \otimes 1$, $8 \otimes 8$ (Fierz-equivalent)

Color

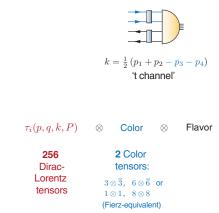
Flavor

Keep s waves only:

Fierz-complete, 16 Dirac-Lorentz tensors

#	Structure
1	$(C^T \gamma_5)_{2,1} \otimes (\gamma_5 C)_{3,4}$
2	$\mathcal{C}^T \gamma_5 P \otimes \gamma_5 \mathcal{C} + \mathcal{C}^T \gamma_5 \otimes \gamma_5 P \mathcal{C}$
3	$C^T \gamma_5 P \otimes \gamma_5 C - C^T \gamma_5 \otimes \gamma_5 P C$
4	$\mathcal{C}^T\gamma_5 \rlap{/}P\otimes\gamma_5 \rlap{/}P\mathcal{C}$
5	$\mathcal{C}^T \gamma_T^\mu \otimes \gamma_T^\mu \mathcal{C}$
6	$C^T \gamma_T^{\mu} \not \! P \otimes \gamma_T^{\mu} C + C^T \gamma_T^{\mu} \otimes \gamma_T^{\mu} \not \! P C$
7	$C^T \gamma_T^{\mu} \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
8	$C^T \gamma_T^{\mu} P \otimes \gamma_T^{\mu} P C$
9	$C^T \mathbb{1} \otimes \mathbb{1}C$
10	$C^T \gamma_T^{\mu} P \otimes \gamma_T^{\mu} C + C^T \gamma_T^{\mu} \otimes \gamma_T^{\mu} P C$
11	$C^T \gamma_T^{\mu} \not \! P \otimes \gamma_T^{\mu} C - C^T \gamma_T^{\mu} \otimes \gamma_T^{\mu} \not \! P C$
12	$C^T \gamma_T^{\mu} P \otimes \gamma_T^{\mu} P C$
13	$C^T \gamma_T^{\mu} \gamma_5 \otimes \gamma_T^{\mu} \gamma_5 C$
14	$C^T \gamma_T^{\mu} \gamma_5 P \otimes \gamma_T^{\mu} \gamma_5 C + C^T \gamma_T^{\mu} \gamma_5 \otimes \gamma_T^{\mu} \gamma_5 P C$
15	$C^T \gamma_T^{\mu} \gamma_5 P \otimes \gamma_T^{\mu} \gamma_5 C - C^T \gamma_T^{\mu} \gamma_5 \otimes \gamma_T^{\mu} \gamma_5 P C$
16	$C^T \gamma_T^{\mu} \gamma_5 P \otimes \gamma_T^{\mu} \gamma_5 P C$

Table 2.8: Symmetrized Momentum independent s-wave tensor structures.

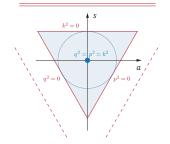


• Singlet: symmetric variable, carries overall scale:

$$S_0 = \frac{1}{4} (p^2 + q^2 + k^2)$$

• **Doublet:** $\mathcal{D}_0 = \frac{1}{4S_0} \begin{bmatrix} \sqrt{3} (q^2 - p^2) \\ p^2 + q^2 - 2k^2 \end{bmatrix}$

Mandelstam triangle, outside: meson and diquark poles!

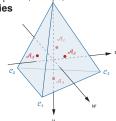


Lorentz invariants can be grouped into multiplets of the permutation group S4:

GE, Fischer, Heupel, Williams, 1411.7876

• Triplet: $T_0 = \frac{1}{4S_0} \begin{bmatrix} 2(\omega_1 + \omega_2 + \omega_3) \\ \sqrt{2}(\omega_1 + \omega_2 - 2\omega_3) \\ \sqrt{6}(\omega_2 - \omega_1) \end{bmatrix}$

tetrahedron bounded by $p_i^2=0$, outside: quark singularities



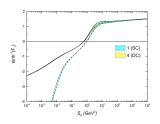
Second triplet:
 3dim. sphere

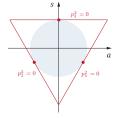
$$T_1 = \frac{1}{4S_0} \begin{bmatrix} 2(\eta_1 + \eta_2 + \eta_3) \\ \sqrt{2}(\eta_1 + \eta_2 - 2\eta_3) \\ \sqrt{6}(\eta_2 - \eta_1) \end{bmatrix}$$

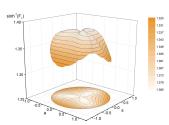
Idea: use symmetries to figure out relevant momentum dependence:

$$f_i(\mathcal{S}_0, \nabla, \diamondsuit, \bigcirc)$$

- cf. photon four-point function
 ⇔ hadronic LbL scattering contribution to muon g-2
 GE, Fischer, Heupel, Williams, 1411.7876
- cf. three-gluon vertex: angular variation in Mandelstam plane is negligible, only S₀ relevant GE, Williams, Alkofer, Vujinovic, PRD 89 (2014)

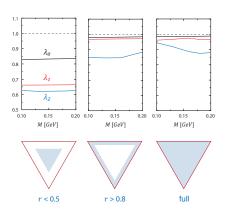






Tetraquark mass

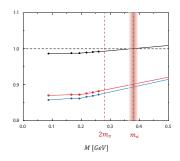
Tetraquark mass driven by momentum dependence close to **r** = 1: visible from phase space cuts (larger eigenvalue ⇔ smaller mass)



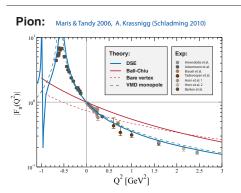
But dense eigenvalue spectrum: **spurious states?**

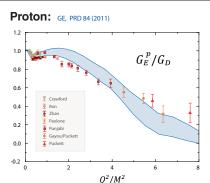
No, just numerical artifact: pion poles at large \mathcal{S}_0 (UV!) not properly resolved

⇒ Implement pion (and diquark) poles analytically: ground state unchanged, but low-lying excitations disappear



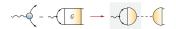
Electromagnetic form factors





Form factor from

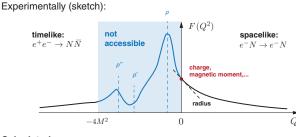
 Timelike vector meson poles automatically generated by quark-photon vertex BSE!

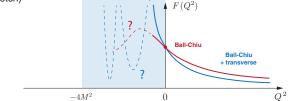


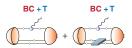
- $\Rightarrow \Gamma^{\mu} =$ **Ball-Chiu** (em. gauge invariance)
 - + Transverse part (vm. poles & dominance)

Quark-photon vertex

Structure of quark-photon vertex is reflected in form factors.





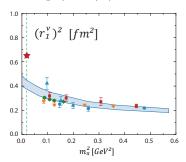


- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii.
 No pion cloud in RL ⇒ timelike ρ-meson poles

Electromagnetic form factors

Nucleon charge radii:

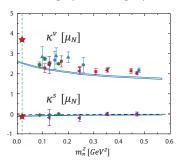
isovector (p-n) Dirac (F1) radius



 Pion-cloud effects missing in chiral region (⇒ divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)



• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp:
$$\kappa^s = -0.12$$

Calc: $\kappa^s = -0.12(1)$

GE, PRD 84 (2011)