Tetraquarks in a Bethe-Salpeter approach

Gernot Eichmann

University of Giessen, Germany

EMMI Workshop:
Anti-matter, hyper-matter and exotica production at the LHC

CERN, July 21, 2015

Outline

- Introduction
- Some background:

Dyson-Schwinger \& Bethe-Salpeter equations, applications to mesons and baryons

- Tetraquarks as meson-meson / diquark-antidiquark systems Heupel, GE, Fischer, PLB 718 (2012)
- Tetraquarks as four-quark systems

Heupel, GE, Fischer, in preparation

- Summary

Introduction

QCD Lagrangian: $\quad \mathcal{L}=\bar{\psi}(x)(i \not \partial y+g \not \mathscr{A}-M) \psi(x)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}$

- if it were only that simple...
we don't measure quarks and gluons, but hadrons

mesons

baryons
g
g

hybrids?

tetraquarks?

pentaquarks?
- Growing evidence for four-quark states in charmonium \& bottomonium spectrum: $\mathrm{X}(3872), \mathrm{Y}(4260)$, charged Z states, ...
Swanson, PLB 588 (2004), Godfrey 0910.3409, Szczepaniak 1110.0647, Brambilla et al., EPJ C71 (2011) \& EPJ C74 (2014), Olsen, Front. Phys. 10 (2015)

Introduction

Light meson spectrum (PDG): grouped with J ${ }^{\mathrm{PC}}$ and flavor content

Introduction

Light meson spectrum (PDG): grouped with J ${ }^{\mathrm{PC}}$ and flavor content

1^{+-}
av

2^{++}
1^{++}

1^{++}
2^{++}
av
t

Introduction

Light meson spectrum (PDG): grouped with J^{PC} and flavor content

Introduction

Light meson spectrum (PDG): grouped with J ${ }^{\mathrm{PC}}$ and flavor content

Introduction

But light scalar $\left(0^{++}\right)$mesons don't fit into the conventional meson spectrum:

- Why are a_{0}, f_{0} mass-degenerate?
- Why are their decay widths so different?

$$
\begin{aligned}
& \Gamma(\sigma, \kappa) \approx 550 \mathrm{MeV} \\
& \Gamma\left(a_{0}, f_{0}\right) \approx 50-100 \mathrm{MeV}
\end{aligned}
$$

- Why are they so light?

Scalar mesons ~ p-waves, should have masses similar to axialvector \& tensor mesons $\sim 1.3 \mathrm{GeV}$

Introduction

What if they were tetraquarks (diquark-antidiquark)?
Jaffe 1977, Close, Tornqvist 2002, Maiani, Polosa, Riquer 2004

$\begin{array}{cc}\left.\begin{array}{cc}f_{0}(980 \mathrm{MeV}) \\ a_{0}(980 \mathrm{MeV})\end{array}\right\} u s \overline{u s}, \ldots \\ \kappa(800 \mathrm{MeV}) & \text { us } \overline{u d}, \ldots \\ \sigma(500 \mathrm{MeV}) & \text { ud } \overline{u d}\end{array}$

- Explains mass ordering: f_{0}, a_{0} have two strange quarks
- Explains decay widths: f_{0} and a_{0} couple to $\mathrm{K} \overline{\mathrm{K}}$, large widths for σ, k

- Alternative: meson molecules?

Weinstein, Isgur 1982, 1990, Close, Isgur, Kumano 1993

- Large Nc, unitarized ChPT, quark models, ELSM, ...

Pelaez 2004, Weinberg 2013, Cohen, Llanes-Estrada, Pelaez, Ruiz de Elvira 2014, Londergan, Nebreda, Pelaez, Szczepaniak 2013, Giacosa 2006, Parganlija, Giacosa, Rischke 2010, ...

Bethe-Salpeter equations

- Extract hadron properties from poles in $q \bar{q}, q q q, q q \overline{q q}$ scattering matrices:

- defines onshell Bethe-Salpeter amplitude. Simplest example: pion

$$
\psi(q, P)=\gamma_{5}\left(f_{1}+f_{2} \not P+f_{3} \phi q+f_{4}[\phi, \not p]\right) \otimes \text { Color } \otimes \text { Flavor }
$$

most general Dirac-Lorentz structure, Lorentz-invariant dressing functions:

$$
f_{i}=f_{i}\left(q^{2}, q \cdot P, P^{2}=-m^{2}\right)
$$

$\Rightarrow \quad \begin{aligned} & \text { pion is made of } \mathbf{s} \text { waves and } p \text { waves! } \\ & \text { (relative momentum } \sim \text { orbital angular momentum) }\end{aligned}$

- Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T=K+K G_{0} T$

$$
\xrightarrow{p^{2} \longrightarrow-m^{2}}
$$

Homogeneous BSE for BS amplitude:

Bethe-Salpeter equations

Kernel is closely related to quark Dyson-Schwinger equation:

- Dynamical breaking of chiral symmetry generates "constituent- quark masses"
$S_{0}(p)=\frac{-i p p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i p p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}$

Bethe-Salpeter equations

Kernel is closely related to quark Dyson-Schwinger equation:

Rainbow-ladder:

 tree-level vertex + effective coupling$$
\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k^{2} \Lambda^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)
$$

Maris, Roberts, Tandy,
PRC 56 (1997), PRC 60 (1999)

Adjust scale Λ to observable, keep width η as parameter

Bethe-Salpeter equations

- BS amplitude makes only sense onshell, but homogeneous BSE = eigenvalue equation, can be solved for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{P^{2} \rightarrow-m_{i}^{2}} 1
$$

- Largest eigenvalue \Leftrightarrow ground state, smaller ones \Leftrightarrow excitations

- Restricted by singularity structure in quark propagator (but no physical threshold!): mesons: $M<2 m_{p}$, baryons: $M<3 m_{p}, m_{p} \sim 500 \mathrm{MeV}$
\Rightarrow include residues (numerically difficult) or extrapolate eigenvalue

Bethe-Salpeter equations

- BS amplitude makes only sense onshell, but homogeneous $\mathrm{BSE}=$ eigenvalue equation, can be solved for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i}, \quad \lambda_{i} \xrightarrow{p^{2} \rightarrow-m_{i}^{2}} 1
$$

- Largest eigenvalue \Leftrightarrow ground state, smaller ones \Leftrightarrow excitations

- Restricted by singularity structure in quark propagator (but no physical threshold!): mesons: $M<2 m_{p}$, baryons: $M<3 m_{p}, \quad m_{p} \sim 500 \mathrm{MeV}$
\Rightarrow include residues (numerically difficult) or extrapolate eigenvalue

Mesons

- Rainbow-ladder works well for pseudoscalar \& vector mesons:
masses, form factors, decays, . Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999); Bashir et al., Commun. Theor. Phys. 58 (2012)

- Rainbow-ladder good for 's-wave' dominated states
- Need to go beyond rainbow-ladder for scalar \& axialvector mesons, excited states, $\eta-\eta^{\prime}, \ldots$
Fischer, Williams \& Chang, Roberts, PRL 103 (2009) Alkofer et al., EPJ A38 (2008),
e.g. σ meson: $600-700 \mathrm{MeV}$ in $\mathrm{RL} \longrightarrow$?

Mesons

Light meson spectrum beyond rainbow-ladder:
Sanchis-Alepuz, Williams, 1504.07776

Exp.

BSE
data provided by R. Williams

- Gluon propagator \& three-gluon vertex consistent with QCD, quark-gluon vertex solved in the process. No need for model interaction!
- Radial excitations and exotics now in the right ballpark.
Scalars?

Baryons

- Covariant Faddeev equation for baryons: keep 2-body interactions \& rainbow-ladder, but no further approximations: $M_{N}=0.94 \mathrm{GeV}$
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011),
Sanchis-Alepuz, Fischer, PRD 90 (2014), Sanchis-Alepuz, Fischer, Kubrak, PLB 733 (2014)

- Baryon form factors:
nucleon and $\Delta \mathrm{FFs}, N \rightarrow \Delta \gamma$ transition
GE, PRD 84 (2011), Sanchis-Alepuz, Williams, Alkofer, PRD 87 (2013), Alkofer, GE, Sanchis-Alepuz, Williams, 1412.8413

- Scattering amplitudes:

Compton scattering
GE \& Fischer, PRD 85 (2012) \& PRD 87 (2013)
hadronic light-by-light for muon g-2

Delta:

Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon:
GE, Alkofer,
Krassnigg, Nicmorus, PRL 104 (2010);
GE, PRD 84 (2011)
ρ-meson:
Maris \& Tandy, PRC 60 (1999)

GE, Fischer, Heupel 1505.06336

Tetraquarks: two-body equation

Use quark-diquark model as template:

- Assumption: separable $q q$ scattering matrix \Rightarrow Faddeev equation simplifies to quark-diquark BSE

- Quark exchange between quark \& diquark binds nucleon
- All quark and diquark properties calculated from quark level, same rainbow-ladder interaction:
scalar diquark $\sim \mathbf{8 0 0} \mathrm{MeV}$, axialvector diquark $\sim \mathbf{1 ~ G e V}$
- N and Δ masses \& form factors very similar: quark-diquark model is good approximation for three-body equation
Nucleon and Δ electromagnetic FFs, $N \rightarrow \Delta \pi$ decay, $N \rightarrow \Delta \gamma$ transition
GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009), Nicmorus, GE, Alkofer, PRD 82 (2010),
Mader, GE, Blank, Krassnigg, PRD 84 (2011), GE, Nicmorus, PRD 85 (2012)

Tetraquarks: two-body equation

Use quark-diquark model as template:

- Assumption: separable $q q, q \bar{q}$ scattering matrices \Rightarrow coupled diquark-antidiquark / meson-meson equations: Heupel, GE, Fischer, PLB 718 (2012)

$+$

- Quark exchange between mesons and diquarks binds tetraquark
- Coupled equations can be contracted into single meson-meson equation, where diquarks appear only internally (not vice versa!)
\Rightarrow meson molecule with diquark-antidiquark admixture!
So far:
- 0^{++}, isoscalar, 4 identical quarks: $n n \overline{n n}, \mathrm{ss} \overline{\mathrm{ss}}, \mathrm{cc} \overline{\mathrm{cc}}, \ldots$.
- keep only pseudoscalar meson and scalar diquark, calculated in rainbow-ladder

Tetraquarks: two-body equation

Use quark-diquark model as template:

- Assumption: separable $q q, q \bar{q}$ scattering matrices \Rightarrow coupled diquark-antidiquark / meson-meson equations: Heupel, GE, Fischer, PLB 718 (2012)

$+$

- Quark exchange between mesons and diquarks binds tetraquark
- Coupled equations can be contracted into single meson-meson equation, where diquarks appear only internally (not vice versa!)
\Rightarrow meson molecule with diquark-antidiquark admixture!
So far:
- 0^{++}, isoscalar, 4 identical quarks: $n n \overline{n n}, \mathrm{ss} \overline{\mathrm{ss}}, \mathrm{cc} \overline{\mathrm{cc}}, \ldots$.
- keep only pseudoscalar meson and scalar diquark, calculated in rainbow-ladder

Tetraquarks: two-body equation

Tetraquark masses:

Heupel, GE, Fischer, PLB 718 (2012)

- up/down: $m \sim 400 \mathrm{MeV} \Leftrightarrow \sigma / f_{0}(500)$?
- The σ is so light because it 'feels'

Goldstone nature of the piondiquarks completely irrelevant!

- Resolves problem with
diquark-antidiquark interpretation:
' $2 \times 800 \mathrm{MeV}$ - binding energy ' $\sim 500 \mathrm{MeV}$?
- All-strange tetraquark: $m \sim 1.2 \mathrm{GeV}$ all-charm tetraquark: $m \sim 5.3 \mathrm{GeV}$
 (below $2 \eta_{c}$ threshold)
\Rightarrow Artifact of 2-body approximation or genuine result?
What about $\kappa, a_{0} / f_{0}$?

Tetraquarks: four-body equation

Start from four-quark bound-state equation:

Two-body interactions:

- $K \otimes I+I \otimes K-K \otimes K$ structure necessary to prevent overcounting in T-matrix $T=K+K G_{0} T$

Kvinikhidze \& Khvedelidze, Theor. Math. Phys. 90 (1992)

- plus permutations:
$(q q)(\bar{q} \bar{q}),(q \bar{q})(q \bar{q}),(q \bar{q})(q \bar{q})$
(12) (34) (23)(14) (13) (24)

Keep two-body interactions with rainbow-ladder kernel: well motivated by many other studies, tetraquark is s-wave

Structure of the amplitude

General structure of Bethe-Salpeter amplitude $\Gamma(p, q, k, P)$ complicated:
$\Gamma(p, q, k, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, k^{2}\right.$,
9 Lorentz invariants
) $\tau_{i}(p, q, k, P)$
256 Dirac-
Lorentz tensors

Q 2 Color tensors $3 \otimes \overline{3}, 6 \otimes \overline{6}$ or $1 \otimes 1,8 \otimes 8$
(Fierz-equivalent)

$p=\frac{1}{2}\left(p_{2}+p_{3}-p_{1}-p_{4}\right)$
's channel'

$q=\frac{1}{2}\left(p_{3}+p_{1}-p_{2}-p_{4}\right)$
'u channel'

$$
\begin{gathered}
k=\frac{1}{2}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \\
\text { 't channel' }
\end{gathered}
$$

Structure of the amplitude

General structure of Bethe-Salpeter amplitude $\Gamma(p, q, k, P)$ complicated:

$$
\begin{aligned}
& \Gamma(p, q, k, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, k^{2}, \ldots\right) \ldots \\
& \tau_{i}(p, q, k, P) \\
& 256 \text { Dirac- }
\end{aligned}
$$

9 Lorentz invariants

$$
\begin{aligned}
& 256 \text { Dirac- } \\
& \text { Lorentz tensors }
\end{aligned}
$$

2 Color tensors
$3 \otimes \overline{3}, 6 \otimes \overline{6}$ or
$1 \otimes 1,8 \otimes 8$
(Fierz-equivalent)

Arrange Lorentz invariants into multiples of permutation group S4:
GE, Fischer, Heupel, 1505.06336

$$
\Rightarrow f_{i}\left(\mathcal{S}_{0}, \nabla, \triangle, \bigcirc\right)
$$

- Singlet: $\mathcal{S}_{0}=\frac{1}{4}\left(p^{2}+q^{2}+k^{2}\right)$
- Doublet: $\mathcal{D}_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}\sqrt{3}\left(q^{2}-p^{2}\right) \\ p^{2}+q^{2}-2 k^{2}\end{array}\right]$
- 2 Triplets:
\square

Keep s waves only:
Fierz-complete, 16 tensors:
e.g. $\left\{\begin{array}{c}C^{T} \gamma_{5} \otimes \gamma_{5} C \\ C^{T} \gamma^{\mu} \otimes \gamma^{\mu} C \\ \cdots\end{array}\right\}$ in (12)(34)
automatically includes also
$\gamma_{5} \otimes \gamma_{5}$ in (23)(14), (31)(24)

BSE eigenvalue

$$
f_{i}\left(\mathcal{S}_{0}, \nabla \cdot \triangle, \bigcirc\right)
$$

Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i},
$$

Largest eigenvalue \Leftrightarrow ground state

$$
\lambda_{i} \xrightarrow{P^{2} \rightarrow-M_{i}^{2}} 1
$$

BSE eigenvalue

$$
f_{i}\left(\mathcal{S}_{0},\right.
$$

Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i},
$$

Largest eigenvalue \Leftrightarrow ground state

$$
\lambda_{i} \xrightarrow{P^{2} \rightarrow-M_{i}^{2}} 1
$$

BSE eigenvalue

$$
f_{i}\left(\mathcal{S}_{0}, \nabla \bullet \triangle\right)
$$

Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i},
$$

Largest eigenvalue \Leftrightarrow ground state

$$
\lambda_{i} \xrightarrow{P^{2} \rightarrow-M_{i}^{2}} 1
$$

BSE eigenvalue

$$
f_{i}\left(\mathcal{S}_{0}, \nabla, \triangle, \bigcirc\right)
$$

Homogeneous BSE = eigenvalue equation, solve for offshell momenta:

$$
K \psi_{i}=\lambda_{i}\left(P^{2}\right) \psi_{i},
$$

Largest eigenvalue \Leftrightarrow ground state

$$
\lambda_{i} \xrightarrow{P^{2} \rightarrow-M_{i}^{2}} 1
$$

Pion poles in $f_{i}\left(\mathcal{S}_{0}, \nabla, \square\right)$

diquark

- Four-body equation dynamically generates pion poles outside the integration domain, although equation knows nothing about pions
- drive tetraquark mass from 1.4 GeV to ~500 MeV
- Poles enter integration domain above threshold $M>2 m_{\pi}$: the tetraquark becomes a resonance

Gap in Mandelstam triangle due to pion poles, diquarks far away \Rightarrow irrelevant

- Four-quark equation produces bound state together with its decay channels!

Tetraquark mass

Evolution with current-quark mass:

Resonance close to $\pi \pi$ threshold, becomes bound state in charm region

Same pattern for multiplet partners:
$\sigma \sim 380 \mathrm{MeV}, \quad \kappa \sim 700 \mathrm{MeV}, \quad a_{0} / f_{o} \sim 920 \mathrm{MeV}$

Outlook?

Hadrocharmonium: $(n \bar{n})(c \bar{c})$

Molecule:
$(\bar{n} c)(n \bar{c})$

Summary

- Two-body and four-body equations give consistent results, suggest light scalar mesons are tetraquarks
- $\sigma \sim 380 \mathrm{MeV}, \kappa \sim 700 \mathrm{MeV}, a_{0} / f_{o} \sim 920 \mathrm{MeV}$
- Dominated by pseudoscalar Goldstone bosons, diquarks irrelevant: 'meson molecule’ (but resonance)
- Extract widths?

Maybe, not sure yet (look for poles in complex plane)

- Tetraquarks in heavy-quark regime?

Maybe, but rainbow-ladder problematic for heavy-light systems

- First solution of genuine four-quark BSE (which is also a resonance!)

Backup slides

Structure of the amplitude

Bethe-Salpeter amplitude $\Gamma(p, q, k, P)$ depends on four independent momenta:

$q=\frac{1}{2}\left(p_{3}+p_{1}-p_{2}-p_{4}\right)$
'u channel'

Structure of the amplitude

Keep s waves only:
Fierz-complete, 16 Dirac-Lorentz tensors

\#	Structure
1	$\left(\mathcal{C}^{T} \gamma_{5}\right)_{2,1} \otimes\left(\gamma_{5} \mathcal{C}\right)_{3,4}$
2	$\mathcal{C}^{T} \gamma_{5} P$ P $\otimes \gamma_{5} \mathcal{C}+\mathcal{C}^{T} \gamma_{5} \otimes \gamma_{5} \not P \mathcal{C}$
3	$\mathcal{C}^{T} \gamma_{5} \not P \otimes \gamma_{5} \mathcal{C}-\mathcal{C}^{T} \gamma_{5} \otimes \gamma_{5} P \mathcal{C}$
4	$\mathcal{C}^{T} \gamma_{5} \not P \otimes \gamma_{5} P \mathcal{P}$
5	$\mathcal{C}^{T} \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \mathcal{C}$
6	$\mathcal{C}^{T} \gamma_{T}^{\mu} \dot{P} \otimes \gamma_{T}^{\mu} \mathcal{C}+\mathcal{C}^{T} \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} P \mathcal{C}$
7	$\mathcal{C}^{T} \gamma_{T}^{\mu} \not P P \otimes \gamma_{T}^{\mu} \mathcal{C}-\mathcal{C}^{T} \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} \not P \mathcal{C}$
8	$\mathcal{C}^{T} \gamma_{T}^{\mu} P P \otimes \gamma_{T}^{\mu} \not P \mathcal{C}$
9	$\mathcal{C}^{T} \mathbb{1} \otimes \mathbb{1} \mathcal{C}$
10	$\mathcal{C}^{T} \gamma_{T}^{\mu} \mathcal{P} \otimes \gamma_{T}^{\mu} \mathcal{C}+\mathcal{C}^{T} \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} P \mathcal{C}$
11	$\mathcal{C}^{T} \gamma_{T}^{\mu} P \otimes \otimes \gamma_{T}^{\mu} \mathcal{C}-\mathcal{C}^{T} \gamma_{T}^{\mu} \otimes \gamma_{T}^{\mu} P \mathcal{C}$
12	$\mathcal{C}^{T} \gamma_{T}^{\mu} P \otimes \otimes \gamma_{T}^{\mu} P \mathcal{C}$
13	$\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \otimes \gamma_{T}^{\mu} \gamma_{5} \mathcal{C}$
14	$\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \boldsymbol{P} \otimes \gamma_{T}^{\mu} \gamma_{5} \mathcal{C}+\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \otimes \gamma_{T}^{\mu} \gamma_{5} \not \boldsymbol{P C}$
15	$\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \not P \otimes \otimes \gamma_{T}^{\mu} \gamma_{5} \mathcal{C}-\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \otimes \gamma_{T}^{\mu} \gamma_{5} \not P \mathcal{C}$
16	$\mathcal{C}^{T} \gamma_{T}^{\mu} \gamma_{5} \not P \otimes \otimes \gamma_{T}^{\mu} \gamma_{5} P \mathcal{C}$

Table 2.8: Symmetrized Momentum independent s -wave tensor structures.

Structure of the amplitude

- Singlet: symmetric variable, carries overall scale:

$$
\mathcal{S}_{0}=\frac{1}{4}\left(p^{2}+q^{2}+k^{2}\right)
$$

- Doublet: $\mathcal{D}_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}\sqrt{3}\left(q^{2}-p^{2}\right) \\ p^{2}+q^{2}-2 k^{2}\end{array}\right]$

Mandelstam triangle, outside: meson and diquark poles!

Lorentz invariants can be grouped into multiplets of the permutation group S4:
GE, Fischer, Heupel, Williams, 1411.7876

- Triplet: $\tau_{0}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}2\left(\omega_{1}+\omega_{2}+\omega_{3}\right) \\ \sqrt{2}\left(\omega_{1}+\omega_{2}-2 \omega_{3}\right) \\ \sqrt{6}\left(\omega_{2}-\omega_{1}\right)\end{array}\right]$
tetrahedron bounded by $p_{i}^{2}=0$, outside: quark singularities
- Second triplet: 3dim. sphere

$$
\mathcal{T}_{1}=\frac{1}{4 \mathcal{S}_{0}}\left[\begin{array}{c}
2\left(\eta_{1}+\eta_{2}+\eta_{3}\right) \\
\sqrt{2}\left(\eta_{1}+\eta_{2}-2 \eta_{3}\right) \\
\sqrt{6}\left(\eta_{2}-\eta_{1}\right)
\end{array}\right]
$$

Structure of the amplitude

Idea: use symmetries to figure out relevant momentum dependence:

$$
f_{i}\left(\mathcal{S}_{0}, \nabla, \triangle, \bigcirc\right)
$$

- cf. photon four-point function \Leftrightarrow hadronic LbL scattering contribution to muon g-2 GE, Fischer, Heupel, Williams, 1411.7876
- cf. three-gluon vertex: angular variation in Mandelstam plane is negligible, only \mathcal{S}_{0} relevant GE, Williams, Alkofer, Vujinovic, PRD 89 (2014)

Tetraquark mass

Tetraquark mass driven by momentum dependence close to $r=1$: visible from phase space cuts (larger eigenvalue \Leftrightarrow smaller mass)

But dense eigenvalue spectrum: spurious states?

No, just numerical artifact: pion poles at large \mathcal{S}_{0} (UV!) not properly resolved
\Rightarrow Implement pion (and diquark) poles analytically: ground state unchanged, but low-lying excitations disappear

Electromagnetic form factors

Pion: Maris \& Tandy 2006, A. Krassnigg (Schladming 2010)

Proton: GE, PRD 84 (2011)

- Form factor from

- Timelike vector meson poles automatically generated by quark-photon vertex BSE!
\sim

G
\square

\qquad

$\Rightarrow \Gamma^{\mu}=$ Ball-Chiu
(em. gauge invariance)
+ Transverse part
(vm. poles \& dominance)

Quark-photon vertex

Structure of quark-photon vertex is reflected in form factors.
Experimentally (sketch):

Calculated:
(Sketch)

- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii. No pion cloud in RL \Rightarrow timelike ρ-meson poles

Electromagnetic form factors

Nucleon charge radii:
isovector ($p-n$) Dirac (F 1) radius

- Pion-cloud effects missing in chiral region (\Rightarrow divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments: isovector ($p-n$), isoscalar ($p+n$)

- But: pion-cloud cancels in $\kappa^{s} \Leftrightarrow$ quark core

$$
\text { Exp: } \quad \kappa^{s}=-0.12
$$

Calc: $\kappa^{s}=-0.12(1)$
!

GE, PRD 84 (2011)

