A-A Correlation in Relativistic Heavy Ion Collisions

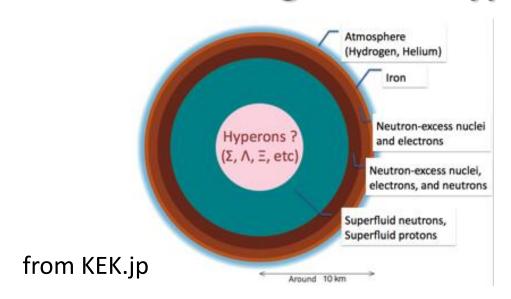
Kenji Morita

(YITP, Kyoto)

in Collaboration with

Akira Ohnishi (YITP)

Takenori Furumoto (Ichinoseki National Col.)

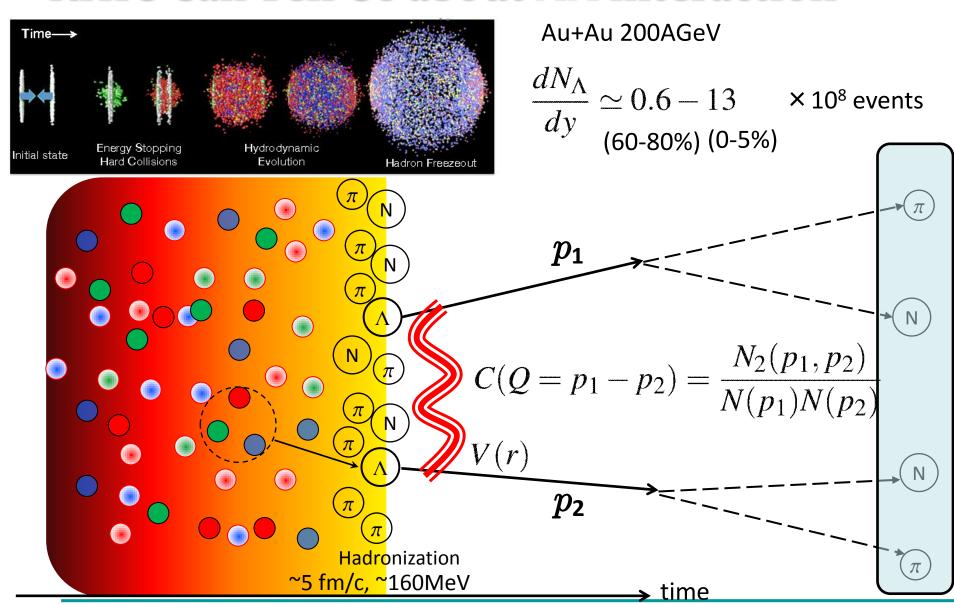

Ref.) Phys. Rev. C91, 024916 (2015)

Role of AA Interaction

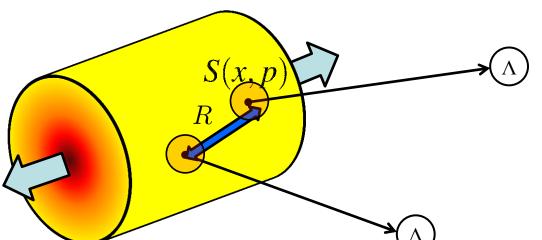
Possible Emergence of Hyperons in NS core

To understand EoS,

Information on


Hyperon-Hyperon

Interaction is indispensable

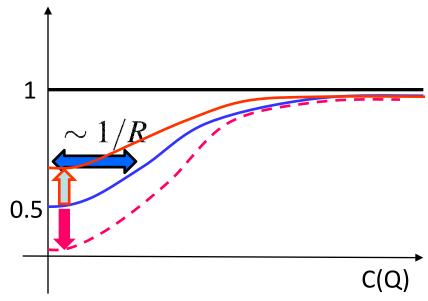

- H-dibaryon (uuddss)?

 - Resonance?

RHIC Can Tell Us about $\Lambda\Lambda$ interaction

AA Correlation in HIC

Independent (Chaotic) emission (←Thermal Source)

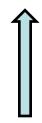

Identical particle correlation from quantum statistics (HBT effect)

C(Q): effective source size

$\Lambda\Lambda$ Interaction : No Coulomb!

Affects C(Q) when effective range r_{eff} is comparable with R

Different results for repulsive and attractive interaction


Approach: Thermal Source + $V_{\Lambda\Lambda}$

Formula (Gong et al., '91)

$$C_2(Q,K) = \frac{\int d^4x_1 d^4x_2 S(x_1,K) S(x_2,K) |\Psi_{12}(Q,x_1-x_2-(t_2-t_1)K/m)|^2}{\int d^4x_1 d^4x_2 S(x_1,k_1) S(x_1,k_2)}$$

Emission source function

- = direct emission + decay daughters
- = (direct + short-lived resonances)

+ Long-lived resonances

EM + Weak

Thermal source model (Mimic hydro)

 $\Lambda\Lambda$ relative wave function

Modification of S-wave by interaction

Various potentials (via 2 or 3 range Gaussian Fit)

Meson exchange models (Nijmegen model D, F, Soft Core89/97, ESC08)

<u>Phenomenological</u> (Ehime) <u>Quark model</u> (fss2)

<u>Fit to $_{\Lambda\Lambda}$ </u> ⁶He(Nagara) Filikhin-Gal (FG) Hiyama et al. (HKMYY)

ΛΛ Wave Function

$$|\Psi|^2 = \frac{1}{4}|\Psi_s|^2 + \frac{3}{4}|\Psi_t|^2 \longrightarrow \operatorname{Sp}_{N_t}$$

Spin: anti-symmetric

Spatially symmetric

Modification in S-wave

No S-wave

$$\Psi_t = \frac{1}{\sqrt{2}} e^{2iK \cdot X} (e^{iQ \cdot r} - e^{-iQ \cdot r})$$

$$\Psi_s = \sqrt{2}e^{iK\cdot X}\left[\cos(Q\cdot r/2) + \chi_Q(r) - j_0(Qr/2)\right]$$

$$\left[-\frac{1}{m_{\Lambda}}\frac{d^2}{dr^2} + V(r)\right] \left[r\chi_Q(r)\right] = \frac{Q^2}{4m_{\Lambda}} \left[r\chi_Q(r)\right]$$

Schrödinger Eq.

Potential, Wave func., / Correlation

Correlation Function for the Static Source

$$C_{\rm stat}(Q) = 1 - \frac{1}{2} e^{-Q^2 R^2} + \frac{1}{4\sqrt{\pi}R^3} \int\limits_0^\infty dr \, r^2 e^{-\frac{r^2}{4R^2}} \left[\left[\chi_Q(r) \right]^2 - \left[j_0 \left(Qr/2 \right) \right]^2 \right] \\ \text{HBT (size R)} \\ \text{Interaction : deviation from free w.f.} \\ \frac{0.1}{NSC89-820} \\ \frac{NSC89-820}{FS2} \\ \frac{FS2}{FS} \\ \frac{FS}{NSC89-820} \\ \frac{FS2}{FS} \\ \frac{FS}{NSC89-820} \\ \frac{FS2}{NSC89-820} \\ \frac{FS2}{NSC89-820}$$

-0.1

0.6

0.8

1.2

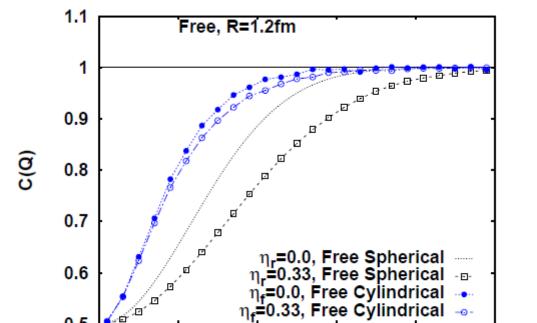
r [fm]

1.4

-0.5

2

3


r/R

Expanding Source Model

S.Chapman et al., '95

$$S(x,k) \propto m_T \cosh(y - Y_L) n_F (u \cdot k/T) \exp\left[-\frac{(\tau - \tau_0)}{2(\Delta \tau)^2} - \frac{x^2 + y^2}{2R^2}\right]$$

$$\sim \exp\left[-\frac{\gamma_T M_T}{T} \cosh(y - Y_L)\right] \exp\left[\frac{\gamma v_T k_T \cos \phi}{T}\right]$$
Give a finite longitudinal extent $R_L \sim \tau_0 \sqrt{\frac{T}{M_T}}$

0.2

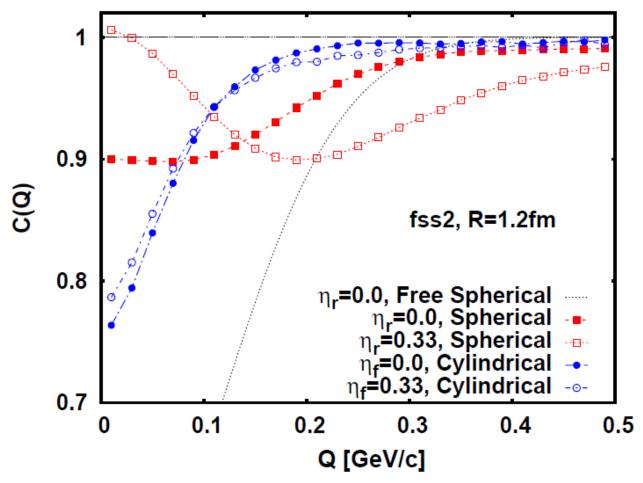
0.3

Q [GeV/c]

0.4

Width of C(Q) $(Q=|p_1-p_2|)$: effective 3d size

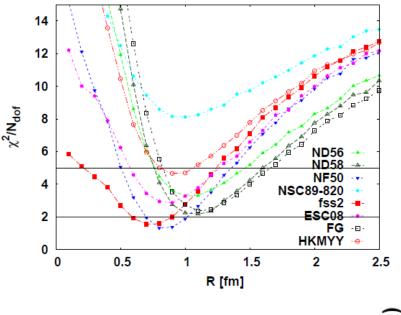
Large R_L: narrow width


Transverse flow: fit to p_t distribution of Λ (STAR '12)

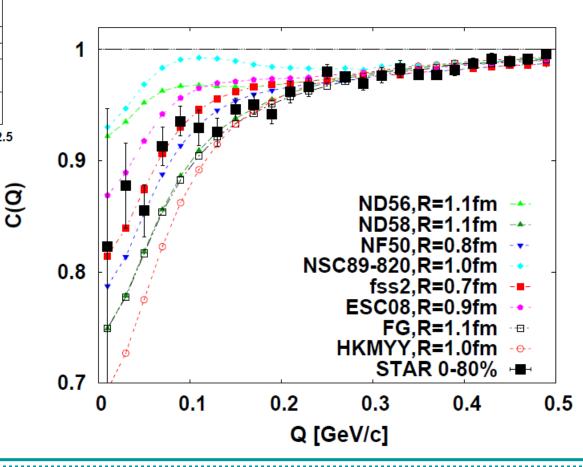
0.5

0.1

0.5

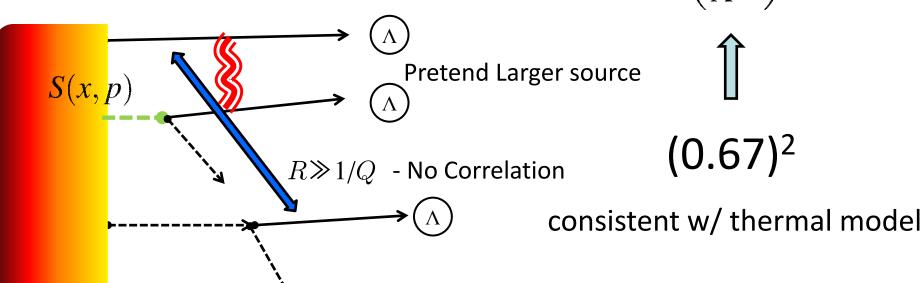

Results from Boost-invariant Source

Effect of η_f is rather small : longitudinal expansion dominates C(Q)


Behavior at small Q is different from the static source!

$V_{\Lambda\Lambda}$ from Expanding Source Model

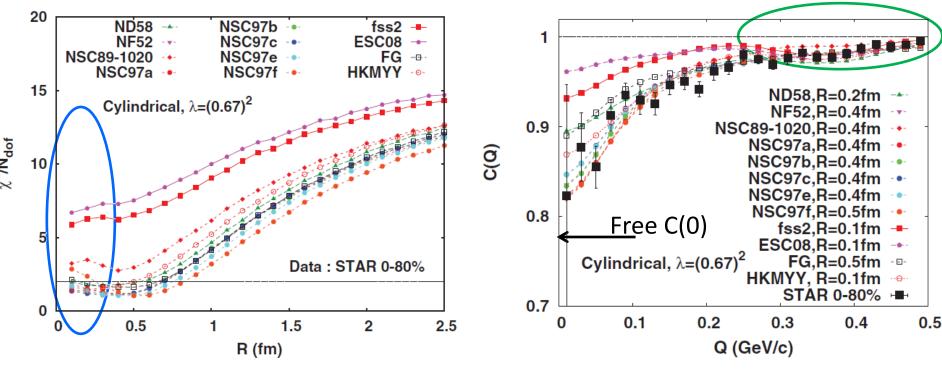
Minimize χ^2 against R


Low Q region sensitive to $V_{\Lambda\Lambda}$

Feed-Down Contribution

- Short-Lived (Σ^* , N* etc) : large R, τ and $\delta \tau$
- $\blacksquare \Xi \rightarrow \Lambda + \pi$ partly subtracted

$$C(Q) o 1 + \left(\frac{\Lambda^{\text{dir}}}{\Lambda^{\text{tot}}}\right)^2 (C(Q) - 1)$$


 $(0.52 if including <math>\Xi)$

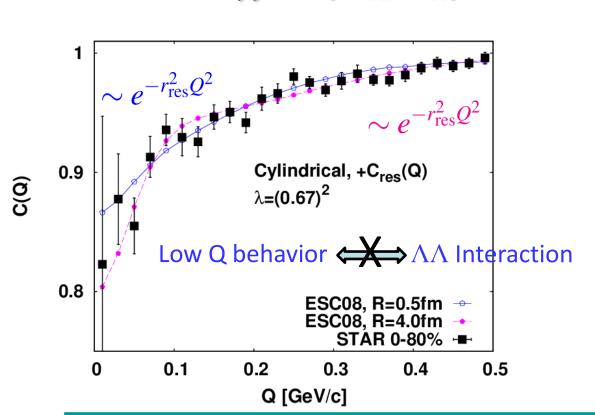
Using Σ^0/Λ =0.278 (p+Be data) and Ξ/Λ = 0.15 (RHIC), $\Lambda^{\rm dir}/\Lambda^{\rm tot}$ = 0.67

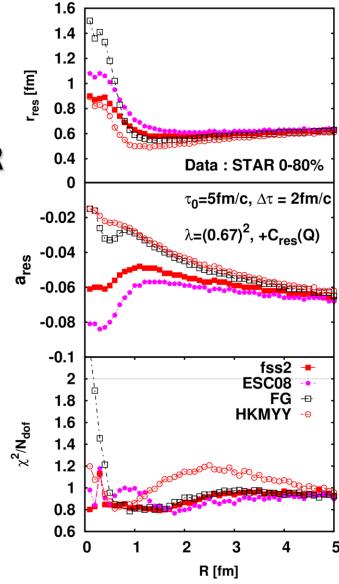
Long Tail in C(Q)

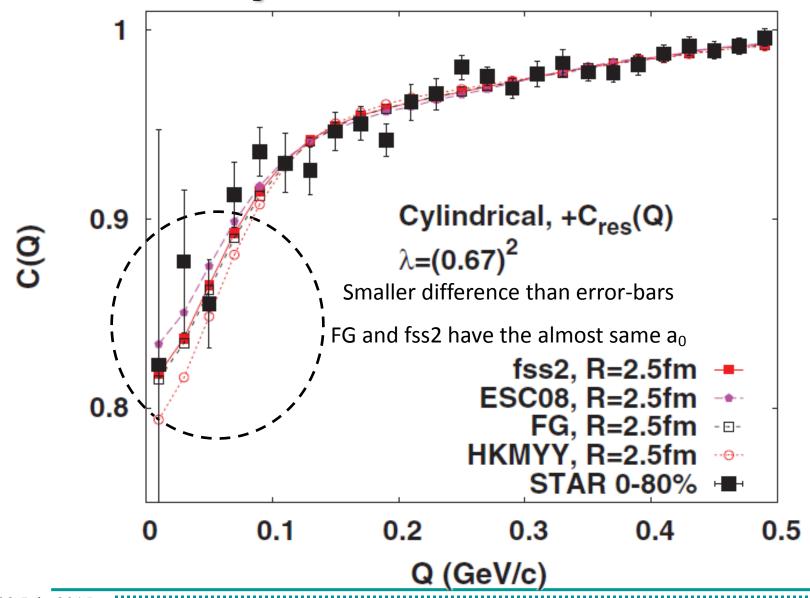
$$C(Q) \rightarrow 1 + (0.67)^2 (C(Q) - 1)$$

Sensitivity at low Q is reduced

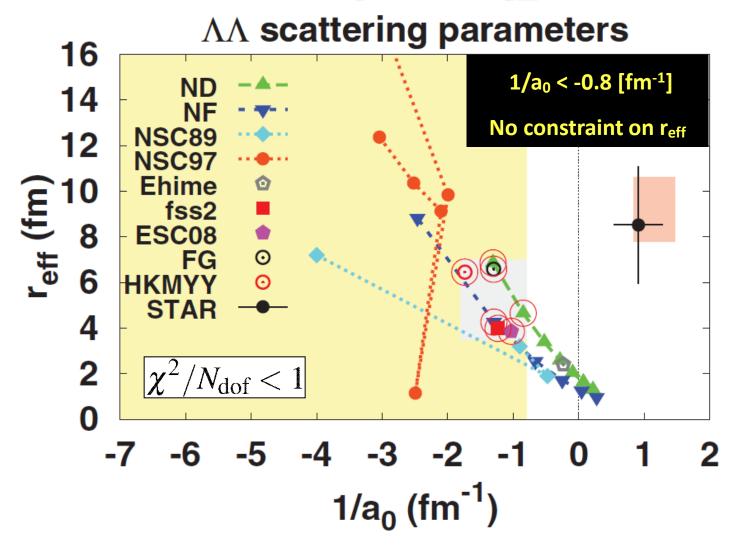
Unphysically small size is preferred;


due to the long tail in C(Q) which cannot be included in the present framework


Long Tail: Residual Correlation?


$$C(Q) \rightarrow C(Q) + a_{\text{res}}e^{-r_{\text{res}}^2Q^2}$$

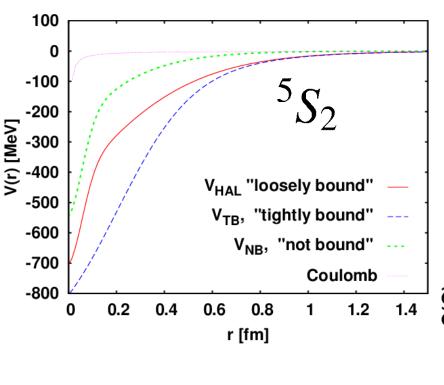
 \bullet minimize χ^2 in (a_{res}, r_{res}) for each R



Sensitivity to Interaction Remains

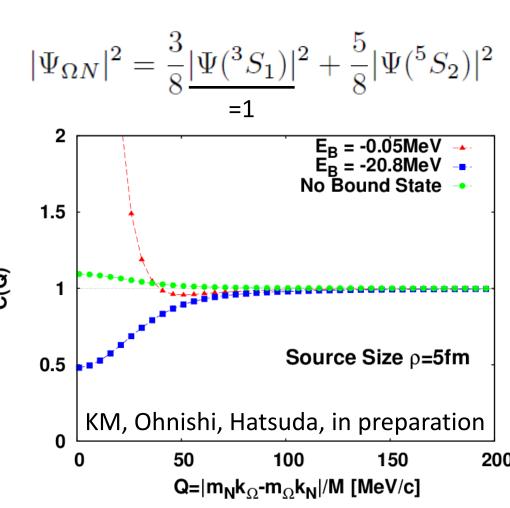
Constraints on ao and reff

Summary and Outlook

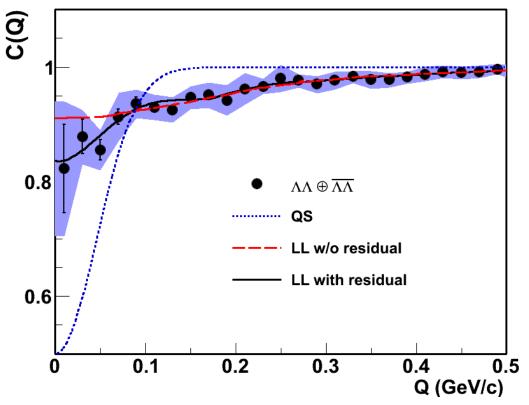

- \blacksquare HIC have potential to determine $\Lambda\Lambda$ interaction
- Ideal measurements (i.e., decay contribution is subtracted) will give stronger constraints
 - Feed-down effect reduces resolving power
- Long-tail in STAR data needs to be subtracted and its origin needs to be understood
- Scattering length $1/a_0 < -0.8$ fm⁻¹
 - Weakly attracting Implies no bound H-dibaryon
- Applicable to other systems
 - HIC as strange hadron factory!

ΩN Correlation

No Pauli Blocking: bound state candidate


Potential from HAL QCD (Etminen et al., NPA'14)

Keep a_0 and $r_{\rm eff}$


Tune parameters

Backup

Analysis by STAR Coll.

arXiv:1408.4360

Fit w/ Lednicky-Lyuboshitz model

Data: long tail (→ Small source size)

Introduce "residual correlation" for a better fit to data

$$a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08} \text{ fm}$$

$$r_{\text{eff}} = 8.52 \pm 2.56^{+2.09}_{-0.74} \text{ fm}$$

$$\chi^2/N_{\text{dof}} = 0.56$$

$$C_{\rm fit}(Q) = N \left[1 + \lambda \left\{ -\frac{1}{2} e^{-r_0^2 Q^2} + \chi(a_0, r_{\rm eff}) \right\} + a_{\rm res} \exp(-r_{\rm res}^2 Q^2) \right]$$
 HBT (size r₀) Interaction Residual correlation

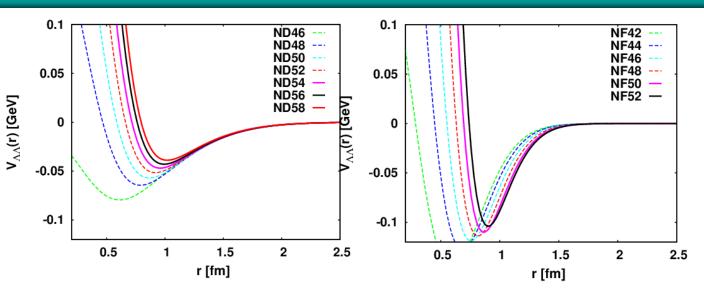
0.18 1.006

2.96 fm

Residual correlation Interaction

-0.044

0.43 fm

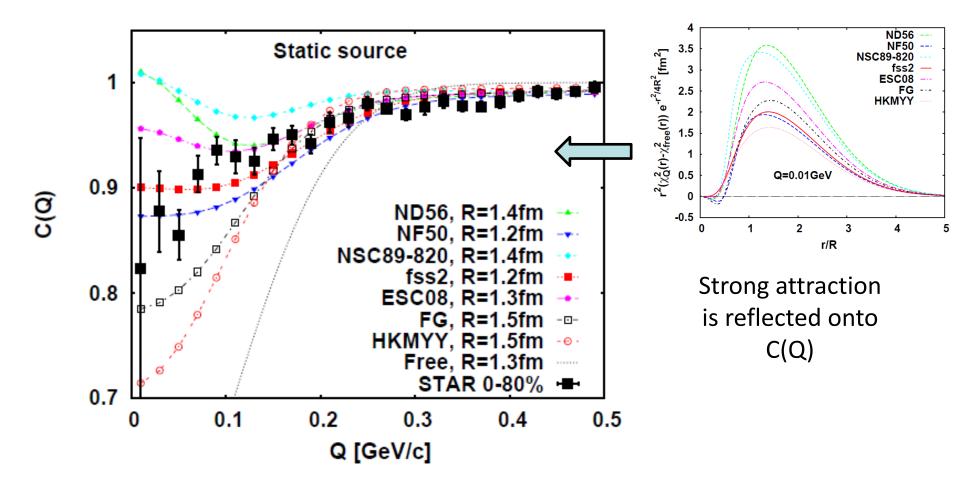

TABLE I: $\Lambda\Lambda$ potentials. The scattering length (a_0) and effective range (r_{eff}) are fitted using a two-range gaussian potential, $V_{\Lambda\Lambda}(r) = V_1 \exp(-r^2/\mu_1^2) + V_2 \exp(-r^2/\mu_2^2)$.

Model	a_0 (fm)	$r_{\rm eff}~({\rm fm})$	μ_1 (fm)	$V_1 \; ({ m MeV})$	$\mu_2 \text{ (fm)}$	$V_2 \; ({ m MeV})$	Ref.
ND46	4.621	1.300	1.0	-144.89	0.45	127.87	[18] $r_c = 0.46 \text{ fm}$
ND48	14.394	1.633	1.0	-150.83	0.45	355.09	[18] $r_c = 0.48 \text{ fm}$
ND50	-10.629	2.042	1.0	-151.54	0.45	587.21	[18] $r_c = 0.50 \text{ fm}$
ND52	-3.483	2.592	1.0	-150.29	0.45	840.55	[18] $r_c = 0.52 \text{ fm}$
ND54	-1.893	3.389	1.0	-147.65	0.45	1114.72	[18] $r_c = 0.54 \text{ fm}$
ND56	-1.179	4.656	1.0	-144.26	0.45	1413.75	[18] $r_c = 0.56 \text{ fm}$
ND58	-0.764	6.863	1.0	-137.74	0.45	1666.78	[18] $r_c = 0.58 \text{ fm}$
NF42	3.659	0.975	0.6	-878.97	0.45	1048.58	[19] $r_c = 0.42 \text{ fm}$
NF44	23.956	1.258	0.6	-1066.98	0.45	1646.65	[19] $r_c = 0.44 \text{ fm}$
NF46	-3.960	1.721	0.6	-1327.26	0.45	2561.56	[19] $r_c = 0.46 \text{ fm}$
NF48	-1.511	2.549	0.6	-1647.40	0.45	3888.96	[19] $r_c = 0.48 \text{ fm}$
NF50	-0.772	4.271	0.6	-2007.35	0.45	5678.97	[19] $r_c = 0.50 \text{ fm}$
NF52	-0.406	8.828	0.6	-2276.73	0.45		[19] $r_c = 0.52 \text{ fm}$
NSC89-1020	-0.250	7.200	1.0	-22.89	0.45	67.45	$[20] m_{\text{cut}} = 1020 \text{ MeV}$
NSC89-920	-2.100	1.900	0.6	-1080.35	0.45	2039.54	$[20] m_{\text{cut}} = 920 \text{ MeV}$
NSC89-820	-1.110	3.200	0.6	-1904.41	0.45	4996.93	$[20] m_{\text{cut}} = 820 \text{ MeV}$
NSC97a	-0.329	12.370	1.0	-69.45	0.45	653.86	[21]
NSC97b	-0.397	10.360	1.0	-78.42	0.45	741.76	[21]
NSC97c	-0.476	9.130	1.0	-91.80	0.45	914.67	[21]
NSC97d	-0.401	1.150	0.4	-445.77	0.30	373.64	[21]
NSC97e	-0.501	9.840	1.0	-110.45	0.45	1309.55	[21]
NSC97f	-0.350	16.330	1.0	-106.53	0.45	1469.33	[21]
Ehime	-4.21	2.41	1.0	-146.6	0.45	720.9	[23]
fss2	-0.81	3.99	0.92	-103.9	0.41	658.2	[25]
ESC08	-0.97	3.86	0.80	-293.66	0.45	1429.27	[22]

TABLE II: $\Lambda\Lambda$ potentials from Nagara event. The scattering length (a_0) and effective range $(r_{\rm eff})$ are fitted using a three-range gaussian potential, $V_{\Lambda\Lambda}(r) = V_1 \exp(-r^2/\mu_1^2) + V_2 \exp(-r^2/\mu_2^2) + V_3 \exp(-r^2/\mu_3^2)$.

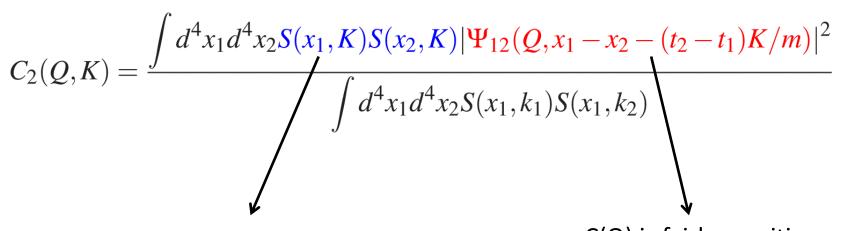
Model	a_0 (fm)	$r_{ m eff}~({ m fm})$	μ_1 (fm)	$V_1 \; ({ m MeV})$	$\mu_2 \text{ (fm)}$	$V_2 \; ({ m MeV})$	μ_3 (fm)	$V_3~({ m MeV})$	Ref.
HKMYY	-0.575	6.45	1.342	-10.96	0.777	-141.75	0.35	2136.6	[3]
FG	-0.77	6.59	1.342	-21.49	0.777	-250.13	0.35	9324.0	[2]

Kenji Morita (YITP, Kyoto)



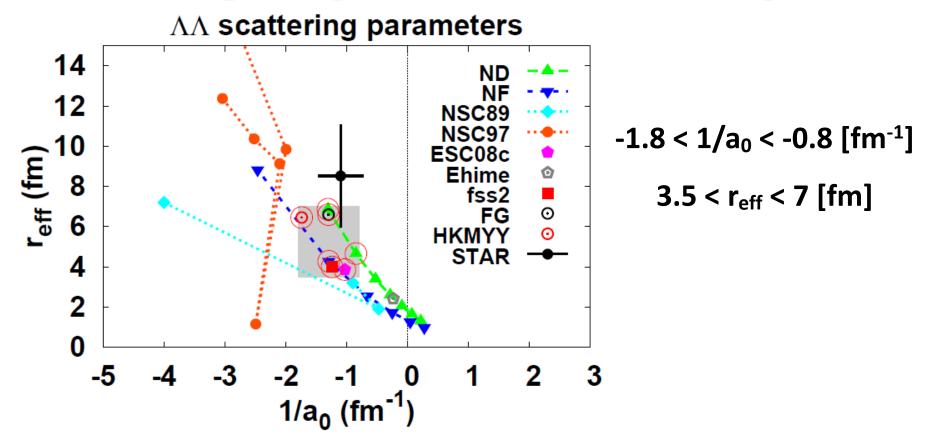
22 July 2015

EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC


Results from the Static Source

Larger variation among potentials than data error-bars

Size : determined from min. χ^2


Collectivity Deforms Source Function

Influence on the best-fit potentials?

C(Q) is fairly sensitive to interaction

Scattering Length and Effective Range

Approach: Thermal Source + $V_{\Lambda\Lambda}$

Formula (Gong et al., '91)

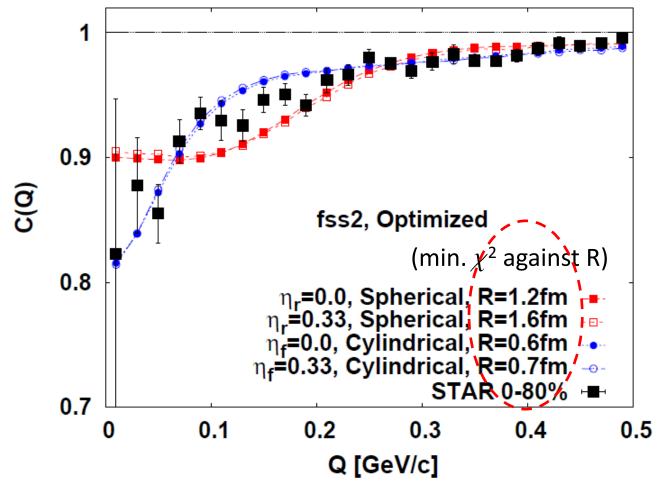
$$C_2(Q,K) = \frac{\int d^4x_1 d^4x_2 S(x_1,K) S(x_2,K) |\Psi_{12}(Q,x_1-x_2-(t_2-t_1)K/m)|^2}{\int d^4x_1 d^4x_2 S(x_1,k_1) S(x_1,k_2)}$$

Emission source func.

Thermal source model (Mimic hydro)

- Static Spherically Symmetric
- Spherically Symmetric + Hubble Flow
- Cylindrically Symmetric + Boostinvariance + Transverse flow

 $\Lambda\Lambda$ relative S-wave func.


Various potentials (via 2 or 3 range Gaussian Fit)

Meson exchange models (Nijmegen model D, F, Soft Core89/97, ESC08)

<u>Phenomenological</u> (Ehime) <u>Quark model</u> (fss2)

<u>Fit to $_{\Lambda\Lambda}$ </u> ⁶He(Nagara) Filikhin-Gal (FG) Hiyama et al. (HKMYY)

Combined effects from flow and $V_{\Lambda\Lambda}$

Effect of η_f is absorbed into change of R_{opt}

Longitudinal expansion gives another type of "best fit"