

Hadronization Studies

Raphaël Dupré

IPN Orsay CNRS-IN2P3 Université Paris-Sud

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél.: +33 1 69 15 73 40 Fax: +33 1 69 15 64 70 http://ipnweb.in2p3.fr

Fragmentation in Vacuum

- Fragmentation functions have been measured by many experiments
 - They respect evolution equations of QCD
- Modeled in different ways
 - String or cluster models for example
- The dynamic is ignored
 - We are unable to describe any of it from first principles

The Hadronization Process

- Process by which colored objects color neutralizes
 - Mix Non perturbative and perturbative QCD
- Most models separate the process in two parts
 - Production time → propagation of the colored quark
 - Formation time → propagation of the color neutral prehadron
- Some theoretical predictions but no experimental quantification of these times!
- With nuclear targets of different size we can measure them!
 - → However the model uncertainty leads to complicated interpretations
 - → We therefore need precise data on a wide set of nuclei and a wide kinematic range to measure these times

Motivations

Understand the hadronization process

- Measuring the characteristic times
- Measuringparton energy loss in QCD medium
- Understanding the pre-hadron structure

Characterization of the QCD medium

- Using parton energy loss
- Characterize both cold and hot nuclear matter
- Understand QCD evolution in medium

Reduce systematic effects on measurements where attenuation needs to be corrected

- Lepton scattering is a unique process for its control over the initial state
- Neutrino experiments
- Nucleon structure in nuclei

Theoretical Models

Important modeling questions are

- Absorption mainly due to parton energy loss or hadron absorption?
- Is there a modification of the evolution in medium?
- If yes, is it sizable in cold nuclear matter or only seen in hot nuclear matter?

Many models exist with different hypothesis

- Some pure models (either parton energy loss or hadron absorption)
- Mixed models (with all possible combinations represented in the literature)

Observables

Multiplicity ratio → Characterizes the attenuation

$$R_A^h(Q^2, X_{Bj}, Z, P_T) = \frac{N_A^h(Q^2, X_{Bj}, Z, P_T)/N_A^e(Q^2, X_{Bj})}{N_D^h(Q^2, X_{Bj}, Z, P_T)/N_D^e(Q^2, X_{Bj})}$$

- Transverse momentum broadening
 - → Characterizes the modification of the Pt spectrum

$$\Delta P_T^2 = \langle P_T^2 \rangle_A - \langle P_T^2 \rangle_D$$

- These are normalized by deuterium to reduce isospin effects
 - → But other nuclei can be used for normalization

SLAC Results

Early nuclear DIS (1978)

- Simple hadron ratios, not multiplicity ratios
- EMC effect not known yet

Attenuation is clearly observed

- Logically enhanced when using heavier nuclei
- Decrease with z
 - Shorter production length?
 - or Reduced parton energy loss?
- No effect is observed for the other variables

EMC Results

- High transverse momentum have increased hadron production
 - Multiple soft scattering
 - Target fragmentation

- Together with SLAC data
- Attenuation appears reduced at higher ν
 - Asymptotic < 1 ?</p>
 - Explained by the Lorentz boost
- Can help to explore hadronization dynamics but with low precision

Fermi Lab E665 Results

Use numbers of slow protons (n_q)

- n_g=0 → Xe behave
 like deuterium
- the nuclear effect grows linearly with n_q

Study target and current regions

the intermediate region follows the target region

HERMES Results

- Explore all hadrons independently
- K- is less suppressed
 - Due to the smaller cross section of K+?
 - The different behavior of the FF?
- Not enough!
 - contamination from $\pi + p \rightarrow \Lambda + K$?
- Can be resolved by selecting higher z
 - Less target fragmentation
- Cumulating all effects it ca be described
 - Kopeliovich et al. (2004)

HERMES: ΔP_t²

- No broadening at high z
 - Effect at the partonic level
- Increase with Q²
 - Predicted in the framework of parton energy loss
- Dependence in A not conclusive
 - Compatible with A^{1/3} and A^{2/3}
- Gives access to q hat the transport coefficient of the medium
 - A killer for parton energy loss models?

Jefferson Lab - EG2 exp

JLab continuous electron beam

- 5.012 GeV electrons
- ~nA current
- 2 cm long liquid deuterium target
- 5 solid targets (C, Al, Fe, Sn and Pb)

In the Hall-B

- CLAS Collaboration spectrometer
- Detect and trigger on scattered electron (selected in DIS kine.)
- Detect hadrons from ~15 to 160 degrees

CLAS Preliminary Results

- Nuclear effect saturates at high A and do not follow either A^{1/3} nor A^{2/3} trends
 - First measurement with enough coverage to reveal such structure
 - Appears contradictory with hadron absorption models at first sight
- Multiplicity ratio and P_t broadening follow the same trend
 - → Do they originate from the same process or just a coincidence?

CLAS Preliminary Results

- → Slope in ν similar to HERMES
- → However, the slope in z is not as pronounced as in HERMES (?)

Results for Apt² consistent with HERMES

Shows interesting trend

z

The Electron Ion Collider (EIC)

- Project of electron ion collider (EIC)
 - JLab and RHIC projects s~1000 GeV² and more
 - Low to no attenuation region \rightarrow centered on ΔP_T^2 measurement
 - Isolate energy loss effects and eventually modification of FF
 - Access to heavy flavor for comparison with Heavy Ion Collisions

Summary

- To study hadronization we need experiments on nuclei
 - The use of lepton-nuclei SIDIS offers the best benchmark for models
 - Benchmarked model can be used to characterize heavy ion collisions
- Hadronization in CNM has been progressing the last 30 years
 - Most features observed in hadronization in nuclei are now understood
- JLab results (CLAS coll.) provides for new high precision data
 - Precision and multi-dimensional binning will allow better test of models
 - Should be also precise enough for first production time extraction
- Future experiments are going to help achieve some important challenges
 - CLAS12 with better coverage will allow both production and formation time extractions
 - EIC will give heavy mesons behavior to compare with recent RHIC and LHC data and large Q2 coverage to test in medium evolution

HERMES Two Pions Ratios

- Multiplicity ratio of two hadrons production
- The A scaling disappears
 - → in contradiction with all the main models
 - → most model ignore these data
- Explanation based on a modification of the FF?
 - → Part of the energy lost by the leading hadron goes to the sub-leading hadrons?

Energy Loss MC Simulation

Nuclear Fermi-motion of the nucleons

Relevant mostly for the lower energies

PYTHIA Monte-Carlo

- Simulation of the electron-nucleon scattering

Parton Energy Loss

- Based on Salgado&Wiedmann calculation (PRD68 014008, 2003)
- Simulating nuclear material using realistic density profile
- Assuming fragmentation will occur outside the nuclei → we cross all the nuclear material

Back to PYTHIA

Fragmentation of the partons

Basic acceptance cuts

Allows more precise comparison with data

Work with A. Accardi

Attenuation from HERMES

- Good description with qhat = 0.36 GeV²/fm
 - Single parameter model!
 - Value is high but still in range to other calculation
- Not consistent with observed transverse momentum?

Transverse Momentum

- How do we got from Lx0.36 to ~0.03 ?
 - Reduction by z square (~ 0.1)
 - Reduction due to lower parton energy
 - Reduction due to absorption
- It gives good description of the transverse momentum together with the transverse momentum broadening

CLAS Preliminary Results

- Some models have important predictions for the Q² trend
- Yet, we see no effect with Δp_{t^2}
 - → to compare with expectations from theory
- Small raise of the multiplicity ratio
 - Same as HERMES
 - Not conclusive
- We have more precision but less coverage than HERMES
 - More investigation is still needed to solve this question

Experiment at CLAS12

Proposal by K. Hafidi et al.

"Quark Propagation and Hadron Formation"

Goals

- To explore both attenuation and ΔPT2
- Many particles available as in HERMES

Advantages

- Larger kinematic coverage than CLAS
- More hadron species than CLAS
- Larger luminosity than CLAS (x10)
 and HERMES (x1000)

