Short-Range Central and Tensor Correlations

Thomas Neff, Hans Feldmeier, Wataru Horiuchi, Dennis Weber

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

EMMI workshop "Cold dense nuclear matter, from short-range correlations to neutron stars" GSI, Darmstadt Oct. 13-16, 2015

Observations

- JLab experiments found that a knocked out high-momentum proton is accompanied by a second nucleon with opposite momentum
- Cross sections for (e, e'pn) and (e, e'pp) reactions show strong dominance of pn- over pp-pairs

Subedi et al., Science 320, 1476 (2008)

Theoretical interpretation

- ab initio calculations with Argonne interactions show high-momentum components
- dominance of *pn* over *pp*-pairs due to the tensor force

Wiringa, Schiavilla, Pieper, Carlson, PRC **85**, 021001(R) (2008) Alvioli *et al.*, Int. J. Mod. Phys. E **22**, 1330021 (2013)

EMMI workshop @ GSI

Nucleon-nucleon interaction

- Properties
- Realistic interactions

Correlations in light nuclei

One- and two-body densities with AV8' interacton

Unitary transformations

- Similarity Renormalization Group
- What happens to short-range physics ?

NCSM+SRG calculations

- compare AV18 and N3LO results
- ⁴He two-body densities
- ⁶He,⁹Be,¹²C two-body densities

Summary

Motivation

NN Interaction

Light Nuclei

Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹

Summary

Nucleon-nucleon interaction

- Nucleons are not point-like, complicated quark and gluon sub-structure
- Nucleon-nucleon (NN) interaction: residual interaction
- Calculation within QCD not possible yet → construct realistic NN potentials describing two-nucleon properties (scattering, deuteron) with high accuracy
- Different potentials available, but same general features ...

NN interaction — Short-range and tensor correlations

- repulsive core: nucleons can not get closer than ≈ 0.5 fm→ central correlations
- strong dependence on the orientation of the spins due to the tensor force (mainly from π-exchange) → tensor correlations
- the nuclear force will induce strong short-range correlations in the nuclear wave function

Argonne V18

- **\pi**-exchange, phenomenological short-range
- as local as possible
- fitted to phase shifts up to 350 MeV, but describes elastic phase shifts up to 1 GeV

$$= \sum_{S,T} V_{ST}^{C}(\hat{r}) \hat{\Pi}_{ST} + \sum_{S,T} V_{ST}^{L2}(\hat{r}) \hat{\boldsymbol{L}}^{2} \hat{\Pi}_{ST} + \sum_{T} V_{1T}^{LS}(\hat{r}) \hat{\boldsymbol{L}} \hat{\boldsymbol{S}} \hat{\Pi}_{1T} + \sum_{T} V_{1T}^{T}(\hat{r}) \hat{\boldsymbol{S}}_{12} \hat{\Pi}_{1T}$$

+
$$\sum_{T} V_{1T}^{TLL}(\hat{r}) s_{12}(\hat{L}, \hat{L}) \hat{\Pi}_{1T}$$

+ ...

Wiringa, Stoks, Schiavilla, PRC 51, 38 (1995)

⁴He Results

⁴He,⁶He,⁹Be,¹

Summary

NN interaction — Chiral effective field theory

N³LO

- potential derived using chiral EFT
- includes full π dynamics
- short-range behavior given by contact-terms
- power counting
- regulated by cut-off (500 MeV)

 $\langle k(LS)J; T | \hat{V}_{N3LO} | k'(L'S)J; T \rangle$

Entem, Machleidt, PRC 68, 041001 (2003)

Figure taken from:

Bogner, Furnstahl, Schwenk, Part. Nucl. Phys. 65, 94 (2010)

Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹²C Su

Solving the nuclear many-body problem

Correlated Gaussian Method

- Correlated Gaussian basis
- uses Jacobi coordinates
- exact results for $A \le 4$

Suzuki, Horiuchi, Orabi, Arai, Few-Body Syst. 42, 33 (2008)

No-Core Shell Model (NCSM)

- Diagonalization of Hamiltonian in harmonic oscillator basis
- Truncation scheme
 - 0ħΩ configuration: lowest single particle orbits filled
 - N ħΩ configuration:
 N oscillator quanta above 0ħΩ configuration
 - Truncation: use only configurations with $N \le N_{max}$
- Check for convergence
- Model space sizes grow rapidly with A and N_{max}

Navrátil, Kamuntavičius, Barrett, Phys. Rev. C, 61, 044001 (2000)

One-body densities for A=2,3,4 nuclei

Feldmeier, Horiuchi, Neff, Suzuki, PRC 84, 054003 (2011)

$$\rho^{(1)}(\boldsymbol{r}_1) = \langle \Psi | \sum_{i=1}^{A} \delta^3(\hat{\boldsymbol{r}}_i - \boldsymbol{r}_1) | \Psi \rangle$$
$$\sigma^{(1)}(\boldsymbol{k}_1) = \langle \Psi | \sum_{i=1}^{A} \delta^3(\hat{\boldsymbol{k}}_i - \boldsymbol{k}_1) | \Psi \rangle$$

one-body densities calculated from
 exact many-body state |Ψ⟩
 (Correlated Gaussian Method) for AV8' interaction

 $\overline{i=1}$

- coordinate space densities reflect different sizes and densities of ²H, ³H, ³He, ⁴He and the 0⁺₂ state in ⁴He
- similar high-momentum tails in the one-body momentum distributions

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²c Summary Two-body densities

number of pairs in given spin-, isospin channels

$$\rho_{SM_S,TM_T}^{(2)}(\boldsymbol{r}_1,\boldsymbol{r}_2) = \langle \Psi | \sum_{i < j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3(\hat{\boldsymbol{r}}_i - \boldsymbol{r}_1) \delta^3(\hat{\boldsymbol{r}}_j - \boldsymbol{r}_2) | \Psi \rangle$$

$$n_{SM_S,TM_T}^{(2)}(\boldsymbol{k}_1,\boldsymbol{k}_2) = \langle \Psi | \sum_{i < j}^{n} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3(\hat{\boldsymbol{k}}_i - \boldsymbol{k}_1) \delta^3(\hat{\boldsymbol{k}}_j - \boldsymbol{k}_2) | \Psi \rangle$$

integrated over center-of-mass position $\mathbf{R} = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)$ or the total momentum of the nucleon pair $\mathbf{K} = \mathbf{k}_1 + \mathbf{k}_2$:

$$\rho_{SM_{S},TM_{T}}^{\text{rel}}(\boldsymbol{r}) = \langle \Psi | \sum_{i < j}^{A} \hat{P}_{ij}^{SM_{S}} \hat{P}_{ij}^{TM_{T}} \delta^{3}(\boldsymbol{\hat{r}}_{i} - \boldsymbol{\hat{r}}_{j} - \boldsymbol{r}) | \Psi \rangle$$

$$n_{SM_{S},TM_{T}}^{\text{rel}}(\boldsymbol{k}) = \langle \Psi | \sum_{i < j}^{A} \hat{P}_{ij}^{SM_{S}} \hat{P}_{ij}^{TM_{T}} \delta^{3} (\frac{1}{2} (\hat{\boldsymbol{k}}_{i} - \hat{\boldsymbol{k}}_{j}) - \boldsymbol{k}) | \Psi \rangle$$

 $|\Psi\rangle$ many-body state, eigenstate of Hamiltonian

⁴He Results

⁴He,⁶He,⁹Be,¹²C St

Summary

Two-body densities in coordinate space for A=2,3,4

S = 0, T = 1

- two-body densities calculated from exact many-body state (Correlated Gaussian Method) for AV8' interaction
- coordinate space two-body densities reflect correlation hole and tensor correlations
- → normalize two-body density in coordinate space at r=1.0 fm
- → normalized two-body densities in coordinate space are identical at short distances for all nuclei
- also true for angular dependence in the S = 1, T = 0 channel (deuteron like)

Two-body densities in momentum space for A=2,3,4

use normalization factors fixed in coordinate space

- two-body densities in momentum space agree for momenta $k > 3 \text{ fm}^{-1}$
- moderate nucleus dependence in momentum region $1.5 \text{ fm}^{-1} < k < 3 \text{ fm}^{-1}$

Feldmeier, Horiuchi, Neff, Suzuki, PRC 84, 054003 (2011)

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹² Summary Unitary Transformations

- Many-body problem very hard to solve with bare interaction
- Universality of SRC suggests to use unitary transformations to obtain a "soft" realistic interaction

$$\hat{H}_{eff} = \hat{U}^{\dagger}\hat{H}\hat{U}$$

The transformation is done in N-body approximation

$$\hat{H}_{eff} = \hat{T} + \hat{V}_{eff}^{[2]} + \ldots + \hat{V}_{eff}^{[N]}$$

and is therefore unitary only up to the N-body level

- Deuteron binding energy and NN phase shifts are conserved
- Not only the Hamiltonian, all operators have to be transformed

$$\hat{B}_{eff} = \hat{U}^\dagger \hat{B} \hat{U}$$

SRG operator evolution studied for Deuteron

Anderson, Bogner, Furnstahl, Perry, PRC 82, 054001 (2010)

 SRG operator evolution for radius and Gaussian two-body operator on 3-body level

Schuster, Quaglioni, Johnson, Jurgenson, Navrátil, PRC 90,011301(R) (2014)

 Evolve Hamiltonian and unitary transformation matrix (momentum space or HO basis)

$$\frac{d\hat{H}_{\alpha}}{d\alpha} = \begin{bmatrix} \hat{\eta}_{\alpha}, \hat{H}_{\alpha} \end{bmatrix}, \qquad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\hat{\eta}_{\alpha}$$

Intrinsic kinetic energy as meta-generator

$$\hat{\eta}_{\alpha} = (2\mu)^2 \, \left[\hat{T}_{\rm int}, \hat{H}_{\alpha} \right]$$

- Evolution is done on the 2-body level α -dependence can be used to investigate missing higher-order contributions
- We will use \hat{U}_{α} to calculate effective operators
- Hamiltonian evolution can now also be done on the 3-body level (Jurgenson, Roth, Hebeler, Maris, ...)

Bogner, Furnstahl, Perry, Phys. Rev. C, **75**, 061001 (2007) Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. **65**, 50 (2010)

⁴He,⁶He,⁹Be,¹²C

Summary

Similarity Renormalization Group

Evolution of the potential

AV8'

N³LO

 $V(k, k') - \alpha = 0.00$ (bare)

⁴He Results

⁴He,⁶He,⁹Be,¹²C

Summary

Similarity Renormalization Group

Evolution of the potential

AV8'

 $V(k, k') - \alpha = 0.01 \text{fm}^4$

⁴He,⁶He,⁹Be,¹²C

Summary

Similarity Renormalization Group

Evolution of the potential

AV8'

 $V(k, k') - \alpha = 0.04 \text{fm}^4$

Similarity Renormalization Group

Evolution of the potential

AV8'

Hans Feldmeier

EMMI workshop @ GSI

⁴He,⁶He,⁹Be,¹²C

Summary

-25

6

Similarity Renormalization Group

Evolution of the potential

AV8'

Hans Feldmeier

EMMI workshop @ GSI

EMMI workshop @ GSI

EMMI workshop @ GSI

Light Nuclei

Unitary Trafos

⁴He Results

ts ⁴He,⁶He,⁹Be,¹²C

C Summary

Similarity Renormalization Group

Deuteron – Momentum Space Densities

AV8'

Hans Feldmeier

EMMI workshop @ GSI

Light Nuclei

Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹²C

Summary

Similarity Renormalization Group

Deuteron – Momentum Space Densities

AV8'

Hans Feldmeier

EMMI workshop @ GSI

simultaneous SRG evolution for transformed Hamiltonian and transformation matrix on the two-body level

$$\frac{d\hat{H}_{\alpha}}{d\alpha} = \begin{bmatrix} \hat{\eta}_{\alpha}, \hat{H}_{\alpha} \end{bmatrix}, \qquad \frac{d\hat{U}_{\alpha}}{d\alpha} = -\hat{U}_{\alpha}\hat{\eta}_{\alpha}, \qquad \hat{\eta}_{\alpha} = (2\mu)^2 \begin{bmatrix} \hat{T}_{\text{int}}, \hat{H}_{\alpha} \end{bmatrix}$$

 Solve many-body problem with SRG transformed Hamiltonian in the No-Core Shell Model (ANTOINE)

$$\hat{H}_{\alpha} \left| \Psi_{\alpha} \right\rangle = E_{\alpha} \left| \Psi_{\alpha} \right\rangle$$

Calculate two-body densities with "bare" and "effective" density operators

$$\rho_{\text{bare}} = \langle \Psi_{\alpha} | \hat{\rho} | \Psi_{\alpha} \rangle, \qquad \rho_{\text{effective}} = \langle \Psi_{\alpha} | \hat{U}_{\alpha}^{\dagger} \hat{\rho} \hat{U}_{\alpha} | \Psi_{\alpha} \rangle$$

Investigate convergence of NCSM calculations and α-dependence of two-body densities

Why⁴He?

- two-body densities available for bare AV8' interaction
- bare N³LO can be converged in NCSM

Objectives

- Compare AV8' and N³LO results
- Check for NCSM convergence
- Check flow dependence $\alpha = 0, 0.01, 0.04, 0.20 \text{ fm}^4$
 - $(\Lambda = \infty, 3.16, 2.24, 1.50 \text{ fm}^{-1})$
- Can we see many-body effects ?

Hans Feldmeier

EMMI workshop @ GSI

EMMI workshop @ GSI

EMMI workshop @ GSI

sults⁴He,⁶He,

2C Summ

⁴He many-body correlations

number of pairs in (S, T) channels

Interaction	(0,0)	(0,1)	(1,0)	(1,1)
AV8'	0.008	2.572	2.992	0.428
AV8' $\alpha = 0.01 \text{fm}^4$	0.008	2.708	2.992	0.292
AV8' $\alpha = 0.04 \text{fm}^4$	0.007	2.821	2.993	0.179
AV8' $\alpha = 0.20 \text{fm}^4$	0.005	2.925	2.995	0.075
N ³ LO	0.009	2.710	2.991	0.290
$N^{3}LO \alpha = 0.01 \text{fm}^{4}$	0.007	2.745	2.992	0.255
$N^{3}LO \alpha = 0.04 \text{fm}^{4}$	0.006	2.817	2.994	0.183
$N^{3}LO \alpha = 0.20 \text{fm}^{4}$	0.004	2.921	2.995	0.079

- occupation of (S, T) = (0, 1) and (S, T) = (1.0) channels reflect many-body correlations
- AV8' induces stronger many-body correlations than N³LO
- with increasing flow parameter many-body correlations become weaker

Motivation NN Interaction Light Nuclei Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹²C

Summary

Relative contributions of ST channels

AV8'

Motivation NN Interaction Light Nuclei Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹²C

Summary

Relative contributions of ST channels

AV8'

- for vanishing pair momentum and $k > k_F$ only high-momentum nucleons are sampled
- vanishing pair momentum implies vanishing pair angular momentum
- look only at pairs with K = 0:

$$n_{SM_S,TM_T}^{(2)}(\boldsymbol{K}=0,\boldsymbol{k}) = \langle \Psi | \sum_{i < j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3(\hat{\boldsymbol{k}}_i + \hat{\boldsymbol{k}}_j) \delta^3(\frac{1}{2}(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{k}}_j) - \boldsymbol{k}) | \Psi \rangle$$

To calculate the translational invariant two-body density the single-particle coordinates are transformed to Jacobi coordinates

$$(\mathbf{x}_1,\ldots,\mathbf{x}_{A-1},\mathbf{x}_A) \rightarrow (\mathbf{\xi}_0,\mathbf{\xi}_1,\ldots,\mathbf{\xi}_{A-3},\mathbf{\eta},\mathbf{\vartheta})$$

with

$$\boldsymbol{\eta} = \sqrt{\frac{2(A-2)}{A}} \left[\frac{1}{A-2} (\mathbf{x}_1 + \ldots + \mathbf{x}_{A-2}) - \frac{1}{2} (\mathbf{x}_{A-1} + \mathbf{x}_A) \right], \qquad \boldsymbol{\vartheta} = \sqrt{\frac{1}{2}} (\mathbf{x}_{A-1} - \mathbf{x}_A)$$

The two-body density in the lab system $\rho^{(2)}$ is then given by a linear transformation of the translational invariant two-body density $\tilde{\rho}^{(2)}$

$$\sum_{M_1} \rho_{n'_1 l_1 m_1, N'_1 L_1 M_1; n_1 l_1 m_1, N_1 L_1 M_1}^{(2)} = \sum_{NN'L} M_{N'_1 L_1, N_1 L_1; N'L, NL}^{(0)} \sum_M \tilde{\rho}_{n'_1 l_1 m_1, N'LM; n_1 l_1 m_1, NLM}^{(2)}$$

 invert transformation to obtain translational invariant density from NCSM wave function

Hans Feldmeier

EMMI workshop @ GSI

EMMI workshop @ GSI

Unitary Trafos

⁴He Results

⁴He,⁶He,⁹Be,¹²C

Summary

Relative contributions of ST channels

N³LO interaction

all pair momenta

⁴He,⁶He,⁹Be,¹²C Summary

Relative contributions of ST channels

N³LO interaction

all pair momenta

EMMI workshop @ GSI

Heavier nuclei

Calculation

- bare AV18 and N³LO can not be converged for heavier nuclei
- NCSM converges only for larger flow parameters

Objectives

- Compare AV18 and N³LO results
- Check for NCSM convergence
- Check flow dependence $\alpha = 0.04, 0.08, 0.20 \text{ fm}^4$ ($\Lambda = 2.24, 1.88, 1.50 \text{ fm}^{-1}$)
- What is different from ⁴He ?

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²C Summary AV18, $K \approx 0$, $\alpha = 0.04$ fm⁴

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²C Summary AV18, $K \approx 0$, $\alpha = 0.04$ fm⁴

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²C Summary **AV18**, $K \approx 0$, $\alpha = 0.08$ fm⁴

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²C Summary AV18, $K \approx 0$, $\alpha = 0.20$ fm⁴

Motivation NN Interaction Light Nuclei Unitary Trafos ⁴He Results ⁴He,⁶He,⁹Be,¹²C Summary N³LO, $K \approx 0$, $\alpha = 0.20$ fm⁴

pp, pn, nn relative contributions, $K \approx 0$

pp, pn, nn relative contributions, *K* ≈ 0

EMMI workshop @ GSI

Similarity Renormalization Group

- **SRG** evolved Hamiltonian \hat{H}_{α} and unitary transformation matrix \hat{U}_{α}
- "bare" and "effective" density operators

⁴He two-body densities

- stronger short-range correlations for AV8' than N³LO
- short-range and high-momentum components described by effective operators
- high-momentum components above the Fermi momentum dominated by S = 1, T = 0, L = 2 pairs (tensor correlations)
- flow-dependence in T = 1 channels reflects three-body correlations induced by the tensor force
- K = 0 momentum distributions (almost) renormalization flow independent - good choice for studying two-body correlations experimentally -

⁶He,⁹Be,¹²C two-body densities

- Similar behavior in all nuclei *pn* pairs dominate momentum distribution
- T = 1 pairs with L = 1 fill up the *pp/nn* momentum distributions above the Fermi momentum
- AV18 and N³LO provide similar results up to $k \approx 3 \text{ fm}^{-1}$