# **SRCs in x>1 Inclusive Processes**





### Nadia Fomin University of Tennessee

EMMI Workshop Cold dense nuclear matter: from short-range nuclear correlations to neutron stars October 13-16, 2015 GSI, Darmstadt



## **SRCs in x>1 Inclusive Processes**





#### Nadia Fomin University of Tennessee

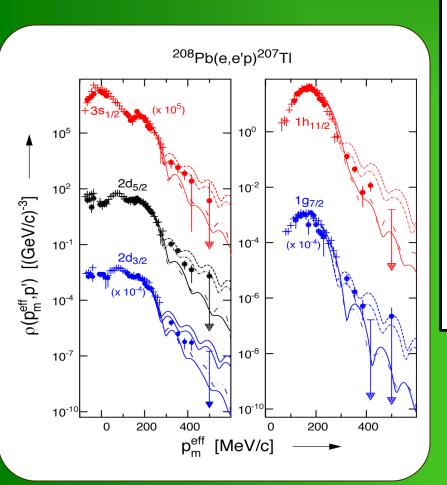
EMMI Workshop Cold dense nuclear matter: from short - range nuclear correlations to neutron stars October 13-16, 2015 GSI, Darmstadt

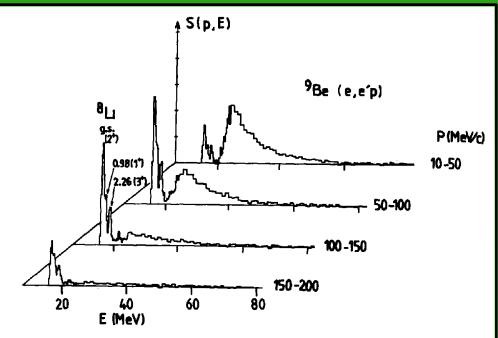


#### High momentum nucleons – where do they come from?

**Independent Particle Shell Model :** 

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$



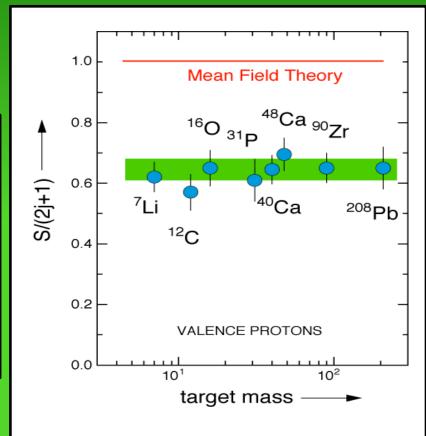


Proton  $E_m, p_m$  distribution modeled as sum of independent shell contributions (arbitrary normalization)

**Independent Particle Shell Model :** 

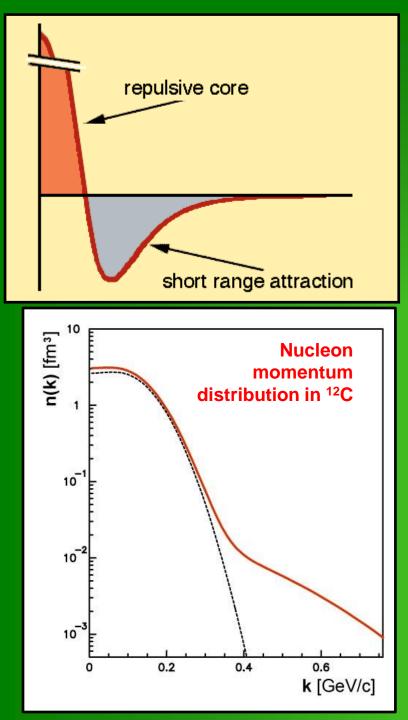
$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

- For nuclei, S<sub>α</sub> should be equal to 2*j*+1
   => number of protons in a given orbital
- However, it as found to be only ~2/3 of the expected value
- The bulk of the missing strength it is thought to come from **short range correlations**



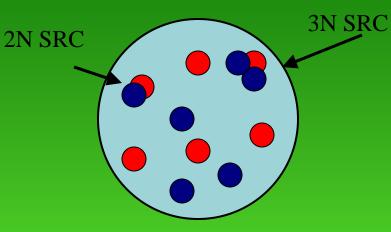


credit: Jonanna Griffin (Jefferson Lab)



#### **High momentum nucleons**

#### - Short Range Correlations



## High momentum tails in A(e,e'p)

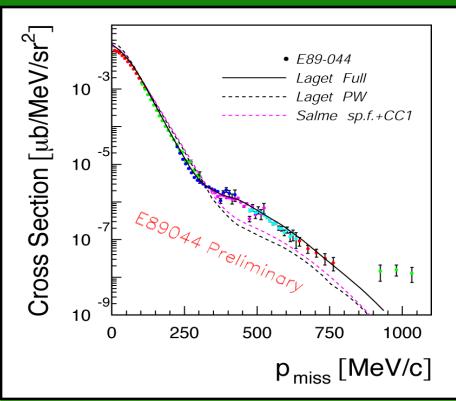
- E89-004: Measure of <sup>3</sup>He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

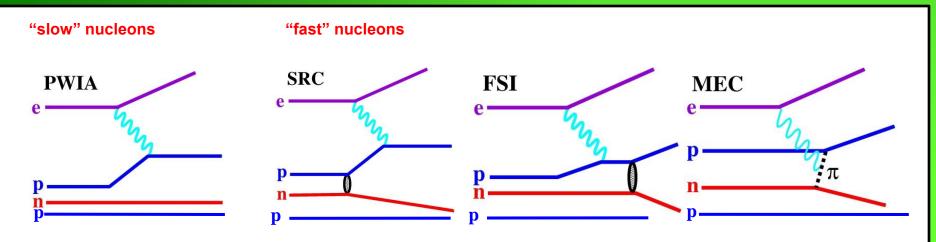
#### **Difficulty**

 High momentum pair can come from SRC (initial state)

#### OR

 Final State Interactions (FSI) and Meson Exchange Contributions (MEC)





A(e,e'p)

#### <sup>2</sup>H(e,e'p) Mainz PRC 78 054001 (2008)

E =0.855 GeV θ = 45° E'=0.657 GeV Q<sup>2</sup>=0.33 GeV<sup>2</sup> x=0.88

#### Unfortunately: FSI, MECs overwhelm the high momentum nucleons

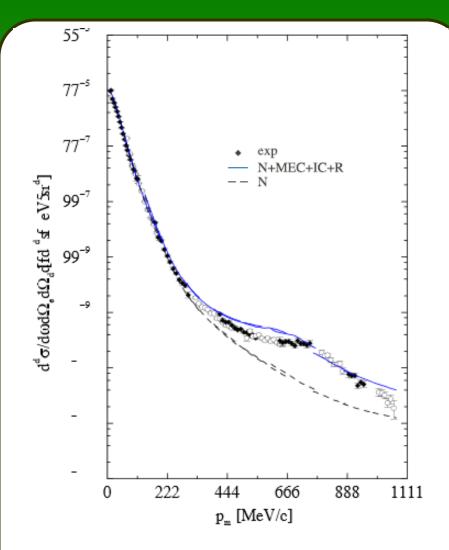
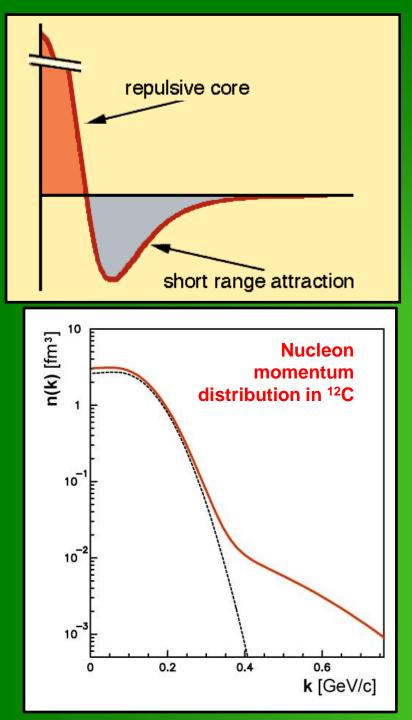
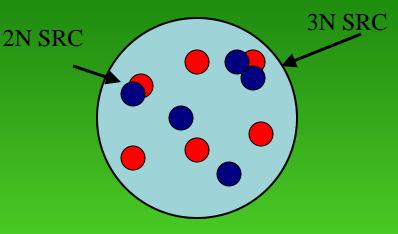


FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for  $Q^2 = 0.33$  $(\text{GeV/c})^2$ [4] compared to calculations [5] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low  $p_m$  data have been re-analyzed and used in this work to determine  $f_{LT}$  (color online).



#### **High momentum nucleons**

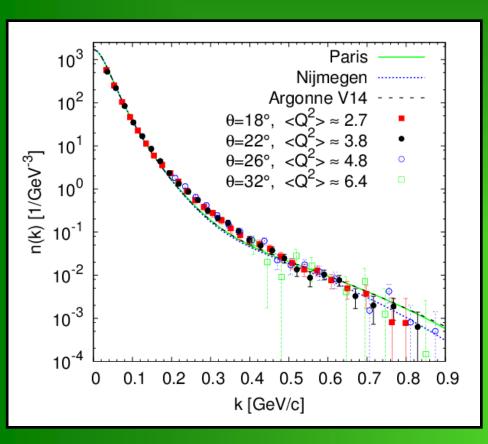
#### - Short Range Correlations



Try inclusive scattering! Select kinematics such that the initial nucleon momentum  $> k_f$ 

#### **High momentum nucleons**

#### - Short Range Correlations



N SRC  

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int d\vec{k} \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$

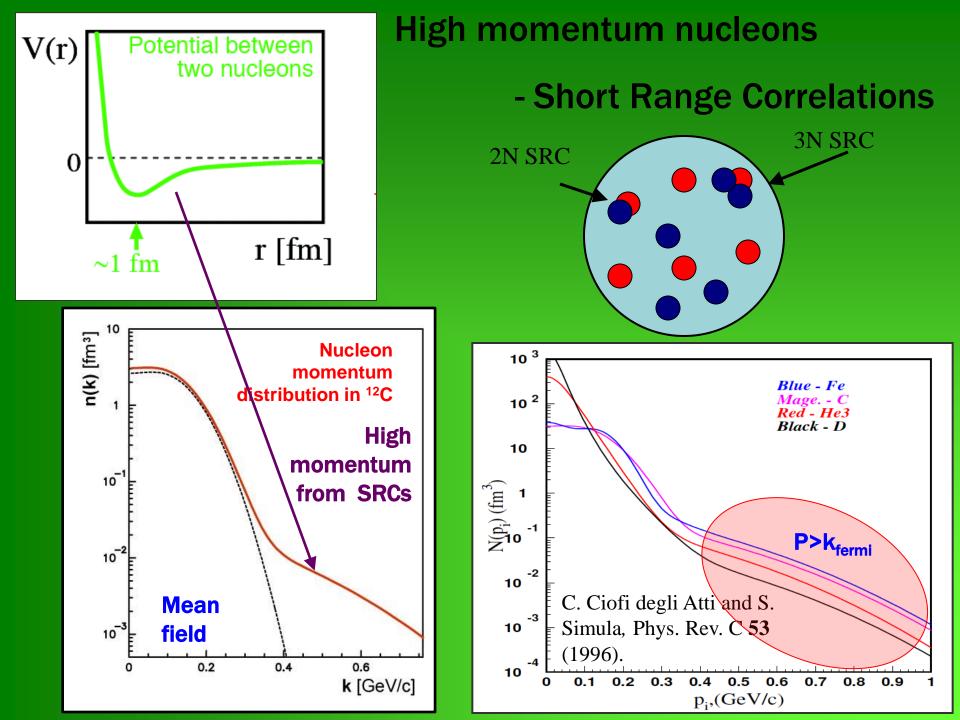
$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y, \mathbf{q}) = \frac{d^2\sigma}{d\Omega dv} \frac{1}{(Z\overline{\sigma}_p + N\overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$

$$=2\pi\int_{|y|}^{\infty}n(k)kdk$$

Ok for A=2





## **Short Range Correlations**

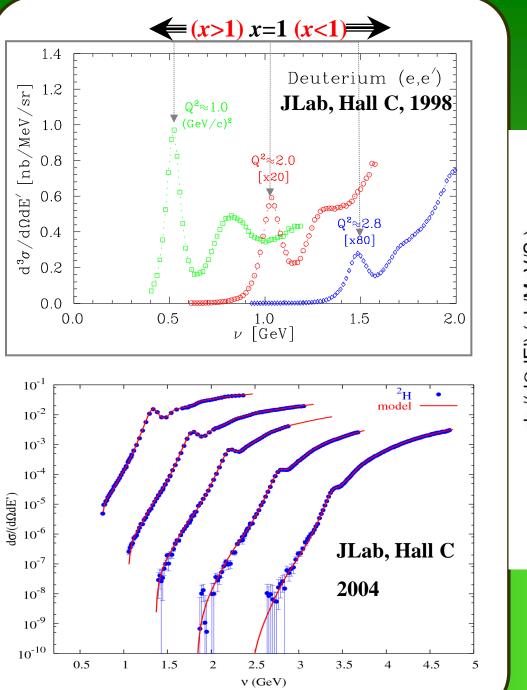
- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
  - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
  - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
  - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
  - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

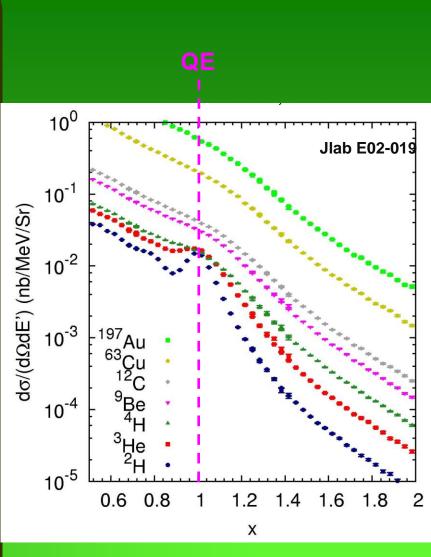
 $\frac{\sigma_A}{r} = a_2(A)$ 

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$
$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) +$$
$$\frac{A}{2} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$





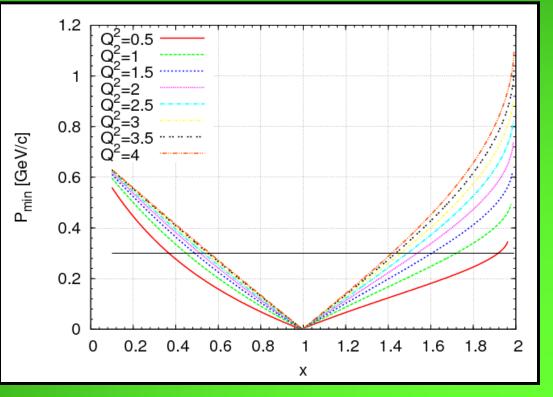
## **Short Range Correlations**

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
  - J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
  - L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
  - L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
  - C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
  - C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

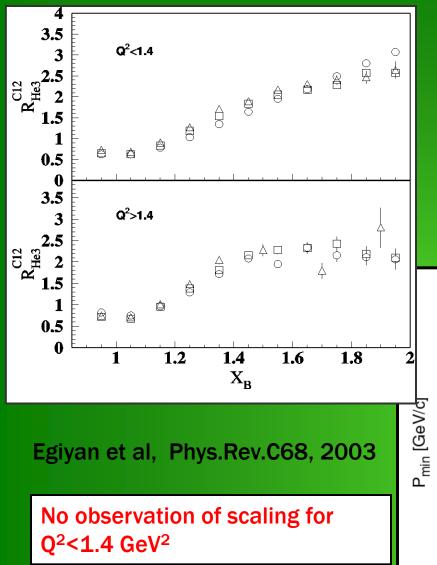
 $\frac{1}{A}\frac{\sigma_A}{\tau} = a_2(A)$ 

1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

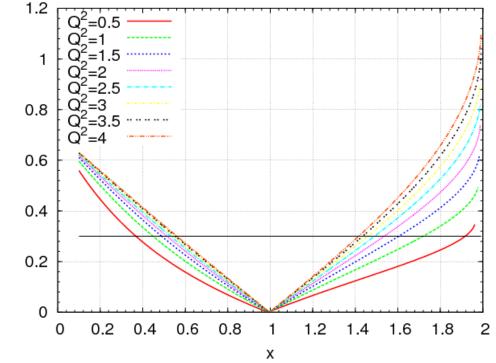


### **Previous measurements**

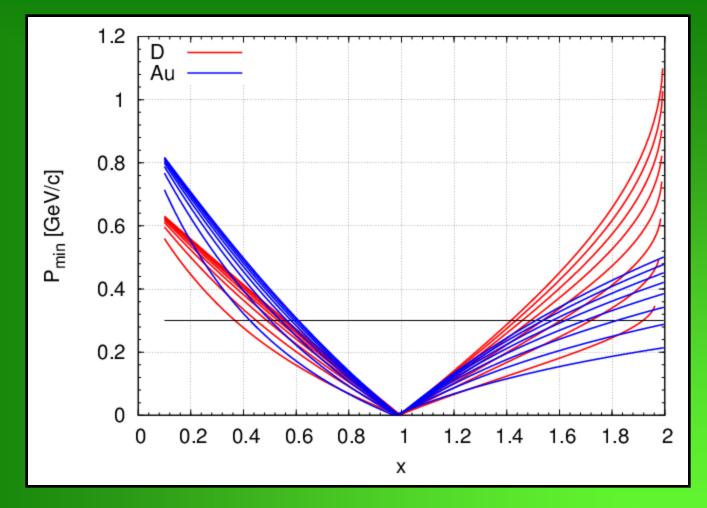


1.4<x<2 => 2 nucleon correlation

2.4<x<3 => 3 nucleon correlation

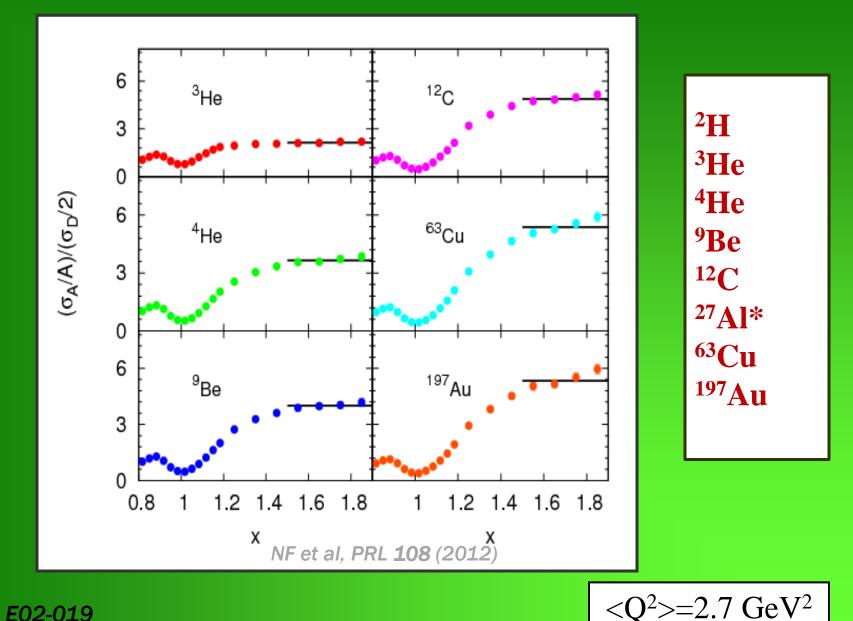


## **Kinematic cutoff is A-dependent**



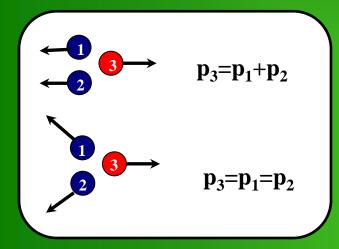
- For heavy nuclei, the minimum momentum changes  $\rightarrow$  heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for  $A>2 \rightarrow MF$  contribution persists for longer

#### E02-019: 2N correlations in A/D ratios



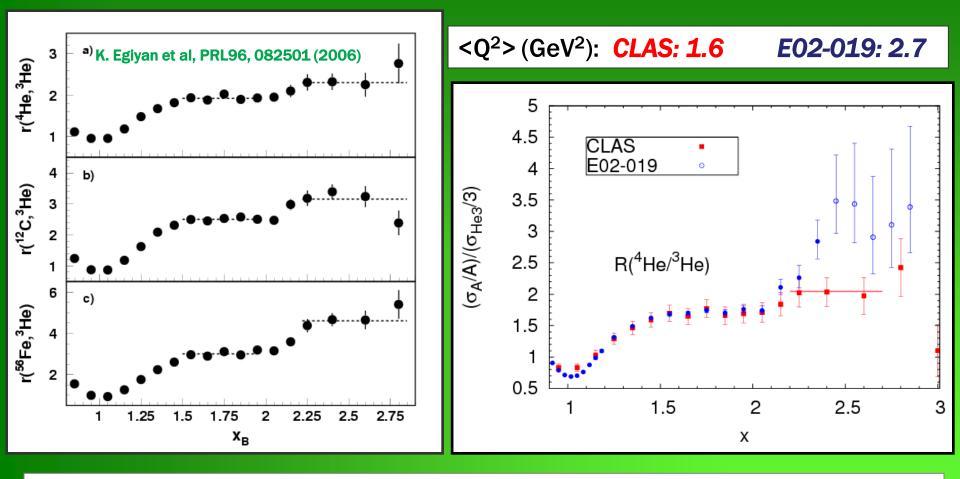
Jlab E02-019

#### Why not more than two nucleons in a correlation?



$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

## **Further evidence of multi-nucleon correlations**

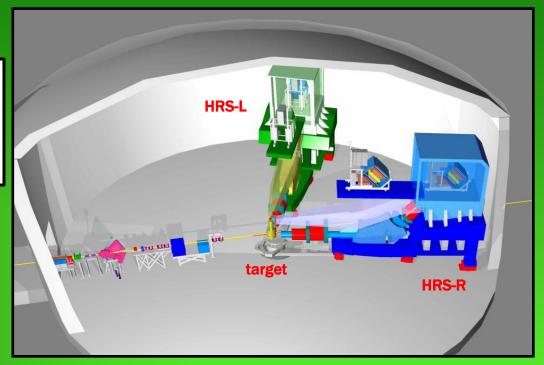


- Excellent agreement for x≤2
- Very different approaches to 3N plateau, later onset of scaling for E02-019
- Very similar behavior for heavier targets

# E08-014: Study 3N correlations

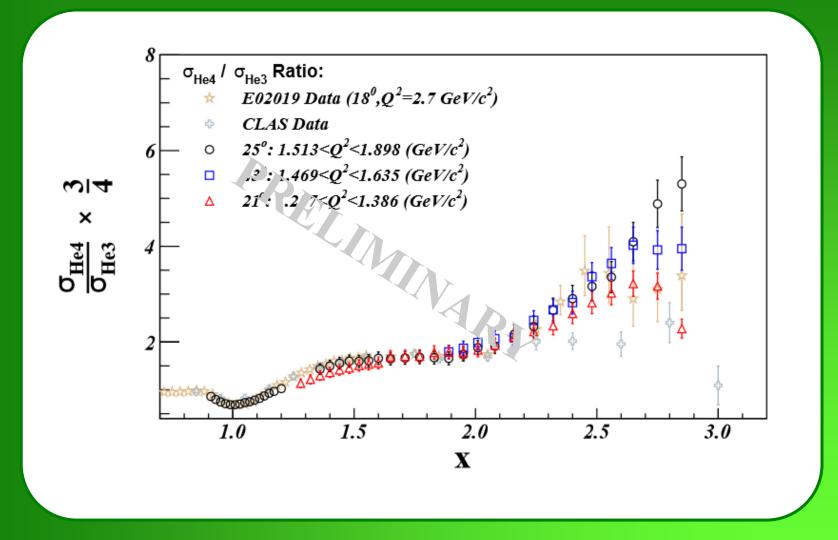
- Map Q<sup>2</sup> dependence of 3N plateau
- Verify Isospin Dependence with <sup>40</sup>Ca and <sup>48</sup>Ca

#### **Analysis in final stages**



If independent: 
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \xrightarrow{\sigma_p \approx 3\sigma_n} 0.92$$
  
If dependent: 
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20 \times 28)/48}{(20 \times 20)/40} \longrightarrow 1.17$$

# E08-014: Study 3N correlations

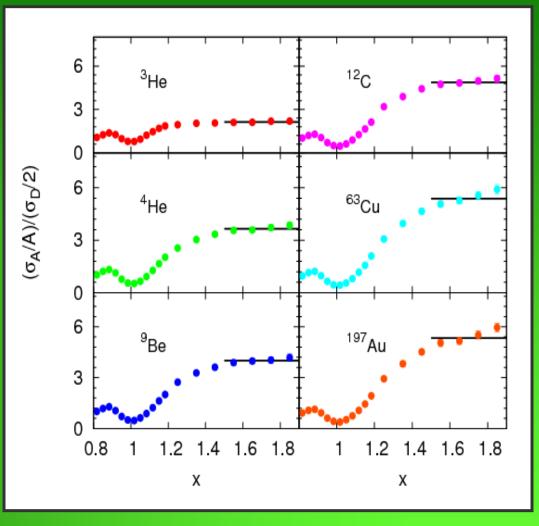


More results in D. Day's talk

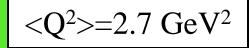
**Plot courtesy of Z. Ye** 

#### **Back to precision 2N ratios**

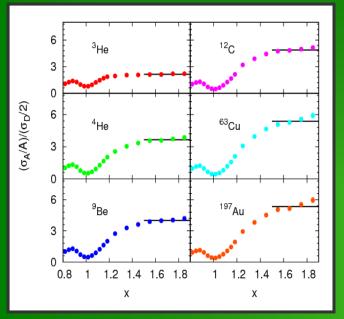
| Α                      | $\theta_e = 18^{\circ}$ |
|------------------------|-------------------------|
| $^{3}\mathrm{He}$      | $2.14{\pm}0.04$         |
| $^{4}\mathrm{He}$      | $3.66{\pm}0.07$         |
| Be                     | $4.00 {\pm} 0.08$       |
| $\mathbf{C}$           | $4.88 {\pm} 0.10$       |
| $\mathbf{C}\mathbf{u}$ | $5.37 {\pm} 0.11$       |
| Au                     | $5.34 {\pm} 0.11$       |
| $\langle Q^2 \rangle$  | $2.7 \ {\rm GeV}^2$     |
| $x_{\min}$             | 1.5                     |



Fomin et al, PRL **108** (2012) Jlab E02-019

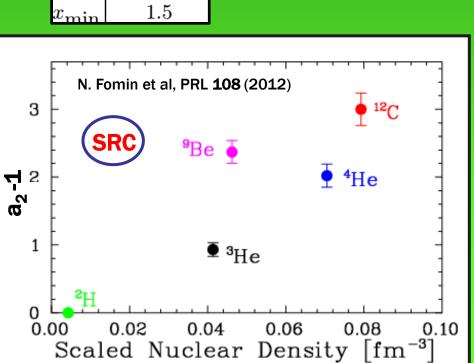


#### Look at nuclear dependence of NN SRCs

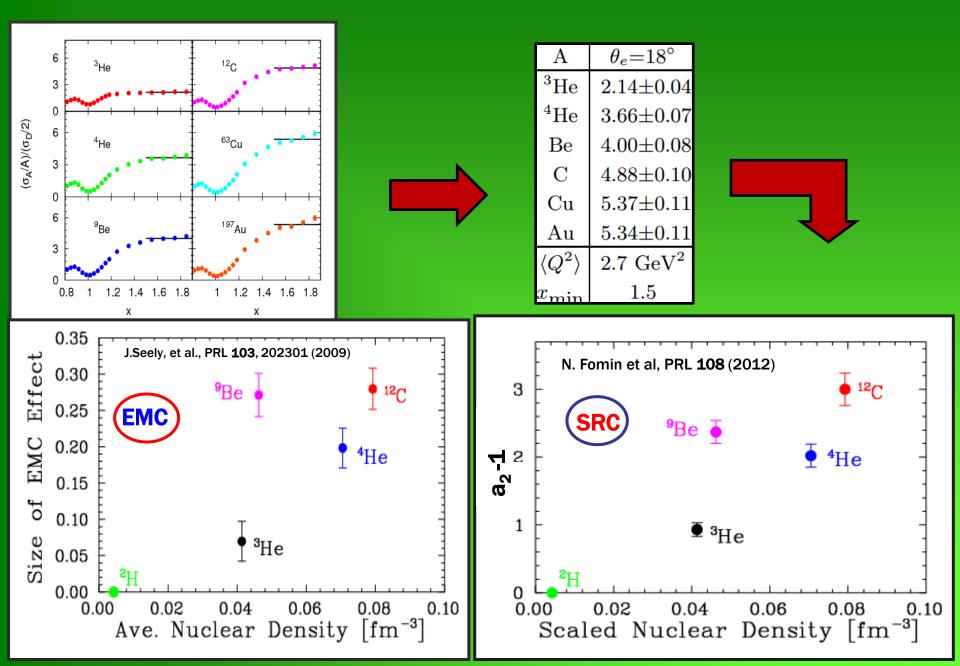




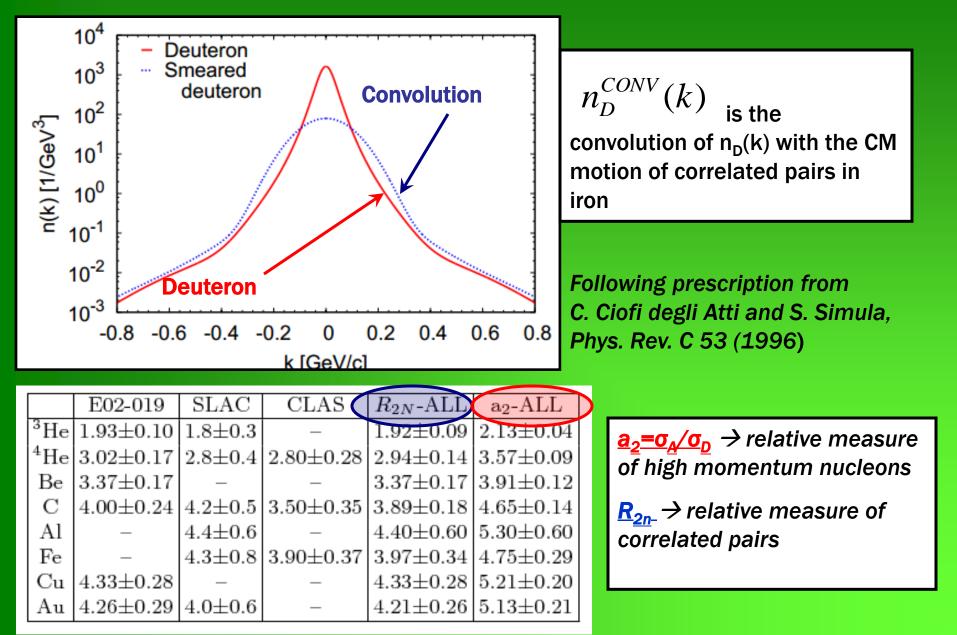
| Α                      | $\theta_e = 18^{\circ}$ |
|------------------------|-------------------------|
| <sup>3</sup> He        | $2.14{\pm}0.04$         |
| $^{4}\mathrm{He}$      | $3.66{\pm}0.07$         |
| Be                     | $4.00 {\pm} 0.08$       |
| $\mathbf{C}$           | $4.88 {\pm} 0.10$       |
| $\mathbf{C}\mathbf{u}$ | $5.37 {\pm} 0.11$       |
| Au                     | $5.34{\pm}0.11$         |
| $\langle Q^2 \rangle$  | $2.7 \ {\rm GeV}^2$     |
| $x_{\min}$             | 1.5                     |



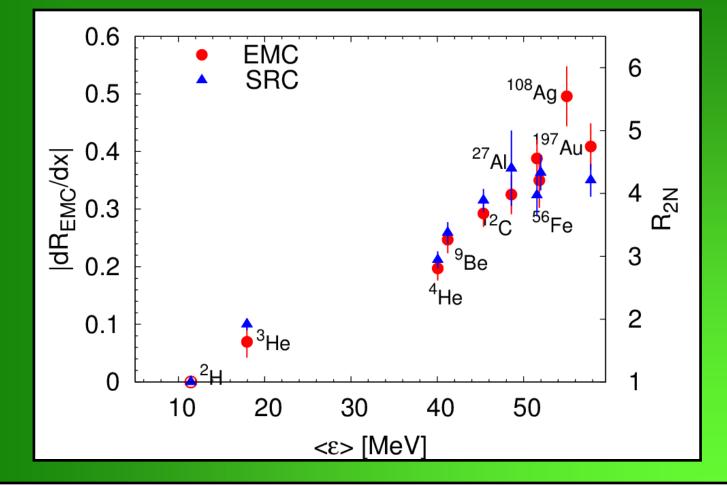
#### Look at nuclear dependence of NN SRCs



## $(a_2 = \sigma_A / \sigma_D)!$ = Relative #of SRCs

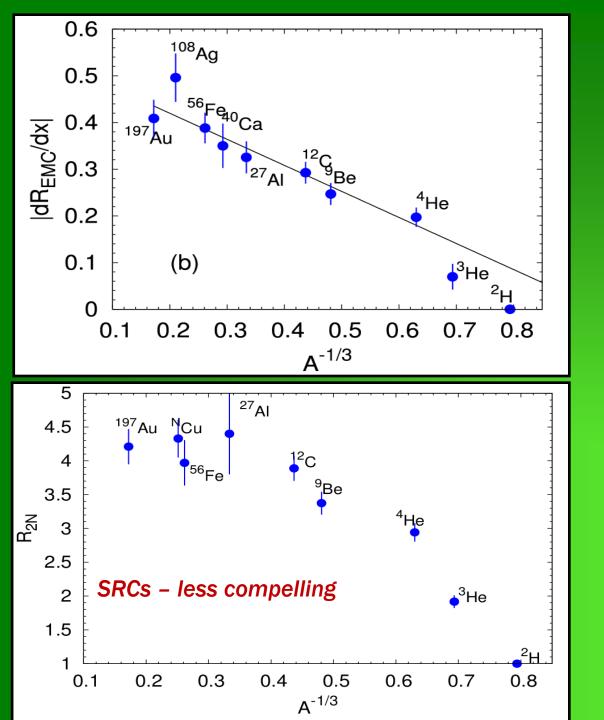


## Both driven by a similar underlying cause? Separation Energy



For SRCs, a linear relationship with  $\langle \epsilon \rangle$  is less suggestive

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)



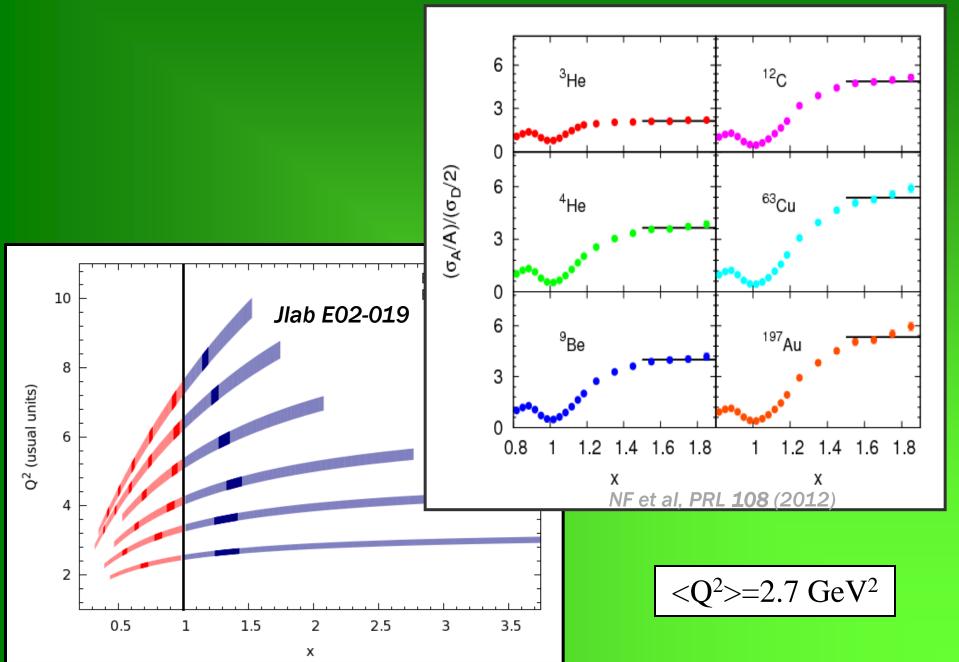
#### **A** <sup>-1/3</sup>

# Apply exact NM calculations to finite nuclei via LDA

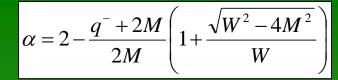
- (A. Antonov and I. Petkov, Nuovo Cimento A 94, 68 (1986)
- (I. Sick and D. Day, Phys. Lett B 274, 16 (1992))
- For A>12, the nuclear density distribution has a common shape; constant in the nuclear interior (bulk)
   → Scale with A
- Nuclear surface contributions grow as A<sup>2/3</sup> (R<sup>2</sup>)
- σ per nucleon would be constant with small deviations that go with A<sup>-1/3</sup>

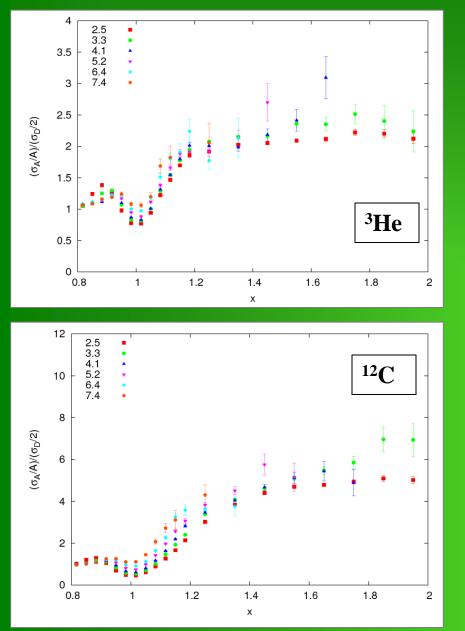
More details in J. Arrington's and O. Hen's talks (and probably others)

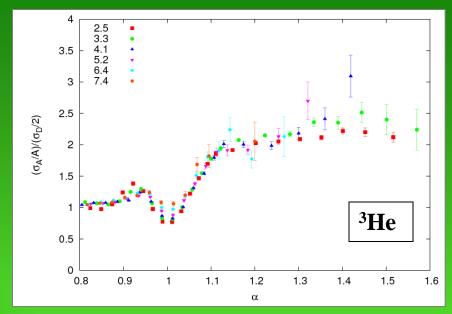
#### The rest of 6 GeV inclusive data

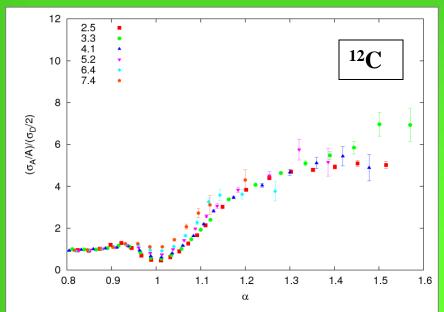


## **Q<sup>2</sup> dependence features**



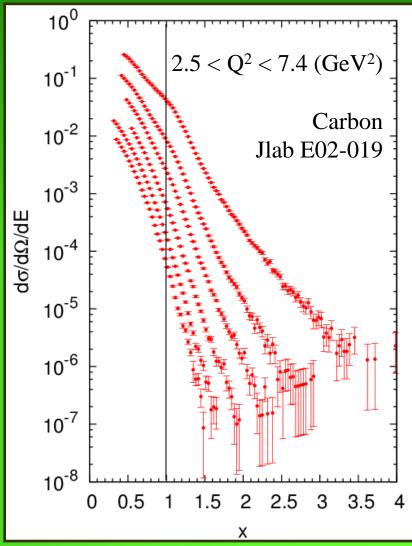




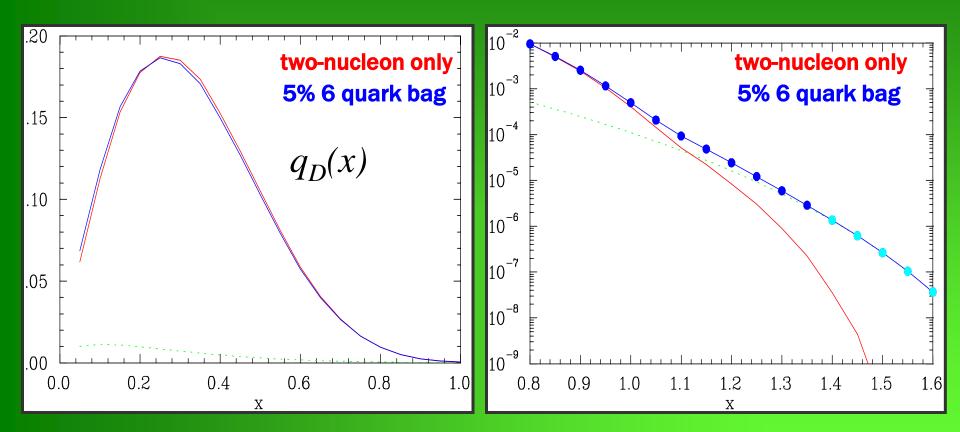


## x > 1: Nuclear PDFs





## Overlapping nucleons $\rightarrow$ enhancement of $F_2$ structure function



# Small effect, possible contribution to EMC effect?

Noticeable effect at x>1

#### How do we get to SFQ distributions

$$F_{2}^{TMC}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}r^{3}}F_{2}^{(0)}(\xi) + \frac{6M^{2}x^{3}}{Q^{2}r^{4}}h_{2}(\xi) + \frac{12M^{4}x^{4}}{Q^{4}r^{5}}g_{2}(\xi)$$
  
Measured structure function  
$$h_{2}(\xi,Q^{2}) = \int_{\xi}^{1} du \frac{F_{2}^{(0)}(u,Q^{2})}{u^{2}}$$
$$g_{2}(\xi,Q^{2}) = \int_{\xi}^{1} dv(v-\xi)\frac{F_{2}^{(0)}(v,Q^{2})}{v^{2}}$$

• We want  $F_2^{(0)}$ , the scaling limit (Q<sup>2</sup> $\rightarrow \infty$ ) structure function as well as its Q<sup>2</sup> dependence

Schienbein et al, J.Phys, 2008

#### From structure functions to quark distributions

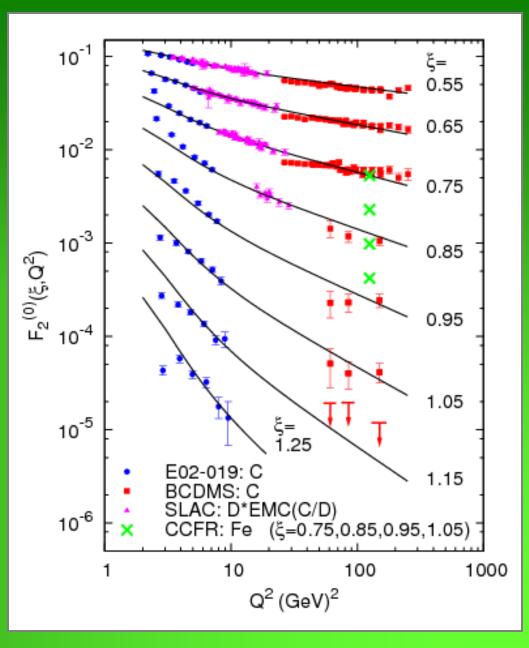
- 2 results for high *x* SFQ distributions (CCFR & BCDMS)
  - both fit  $F_2$  to  $e^{-sx}$ , where s is the "slope" related to the SFQ distribution fall off.
  - **CCFR**:  $s=8.3\pm0.7$  (Q<sup>2</sup>=125 GeV/c<sup>2</sup>)
  - **BCMDS**:  $s=16.5\pm0.5$  (Q<sup>2</sup>: 52-200 GeV/c<sup>2</sup>)
- We can contribute something to the conversation if we can show that we're truly in the scaling regime
  - Can't have large higher twist contributions
  - Show that the Q<sup>2</sup> dependence we see can be accounted for by TMCs and QCD evolution

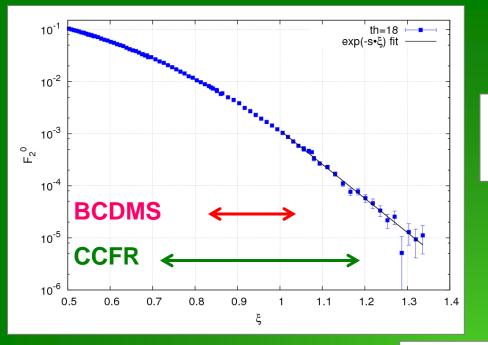
## "Super-fast quarks"

• With all the tools in hand, we apply target mass corrections to the available data sets

• With the exception of low  $Q^2$ quasielastic data – E02-019 data can be used for SFQ distributions

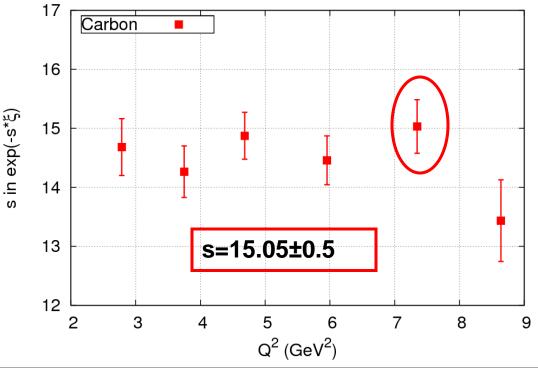
N. Fomin et al, PRL 105, 212502 (2010)

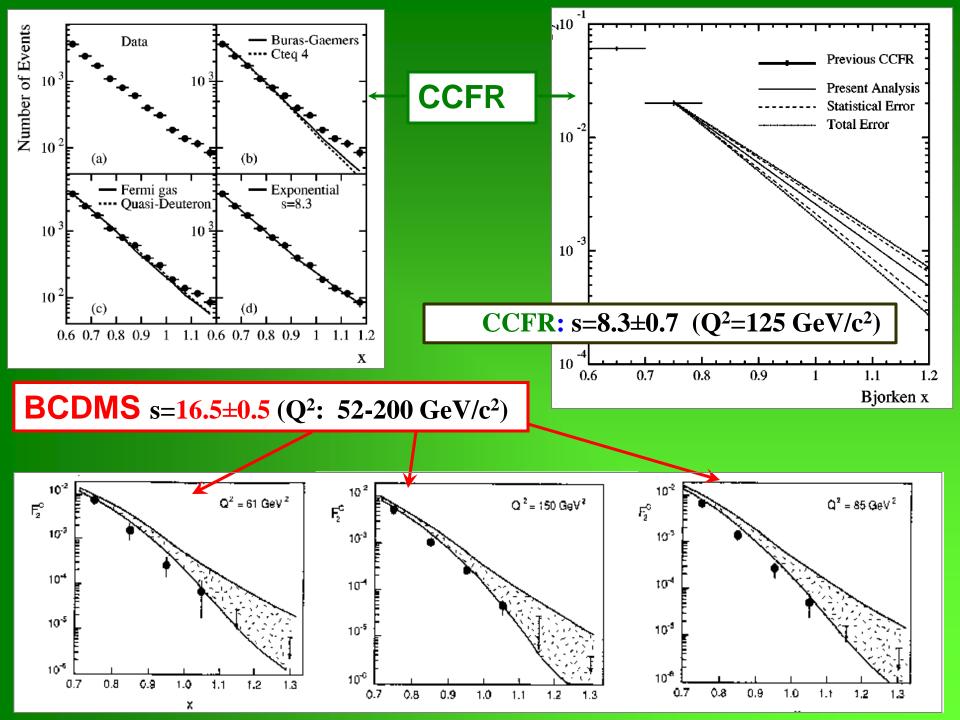


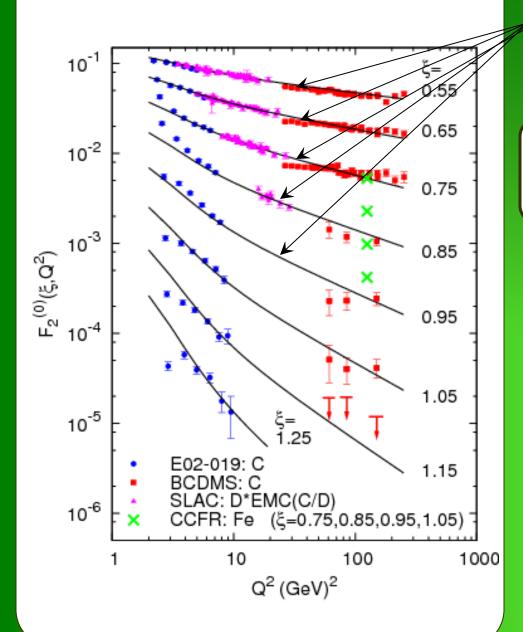


# Final step: fit $exp(-s\xi)$ to $F_2^{0}$ and compare to **BCDMS** and **CCFR**

 $CCFR - (Q^2=125GeV^2)$   $s=8.3\pm0.7$   $BCDMS - (Q^2: 52-200 GeV^2)$  $s=16.5\pm0.5$ 





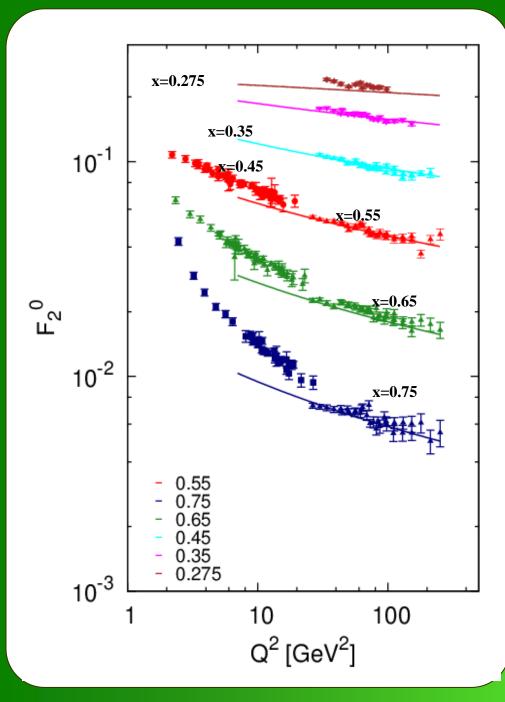


Next: Replace Q<sup>2</sup> dependent fit with nonsinglet QCD evolution

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm}\left(\frac{x}{z}\right) q_i^{\pm}(z).$$

By definition, the result is only physical for  $x \le 1$ 

Fix: use  $x_D$ , rather than  $x_p$ 



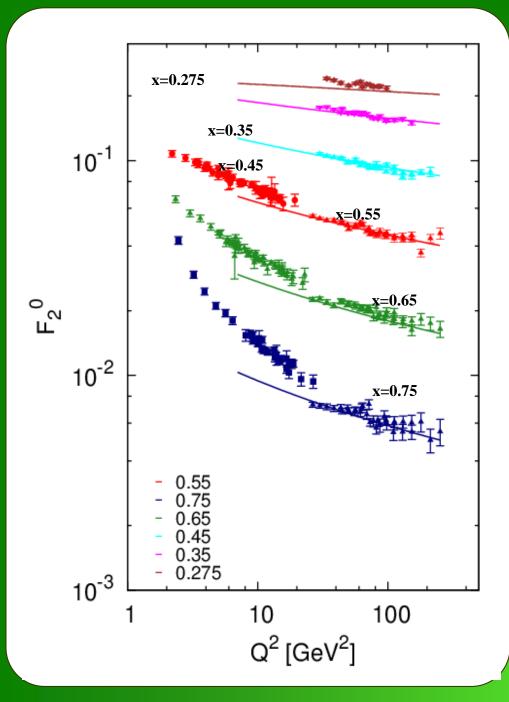
#### **Current Status**

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm}\left(\frac{x}{z}\right) q_i^{\pm}(z).$$

# By definition, the result is only physical for $x \le 1$

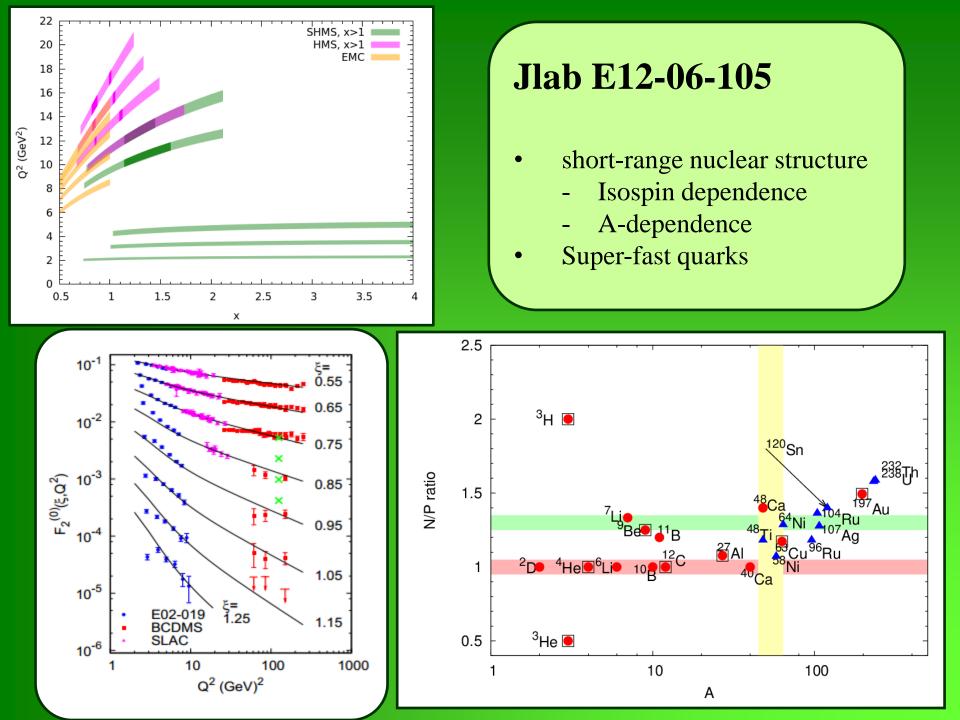
Fix: use  $x_D$ , rather than  $x_p$ 

Rescale F<sub>2</sub><sup>0</sup> fit with xdependent correction to match high Q<sup>2</sup> data



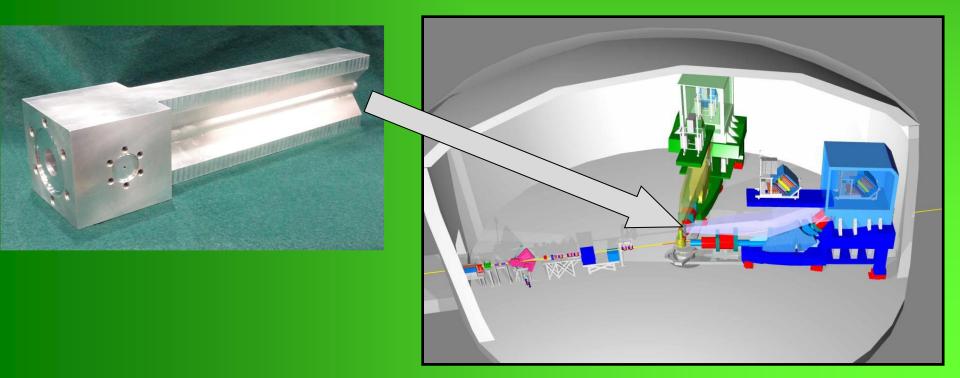
## **Current Status**

- Non-singlet QCD evolution appears to work for nuclear structure functions
  - Higher twist contributions appear to persist to tens of GeV<sup>2</sup>



## Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with <sup>3</sup>H and <sup>3</sup>He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei



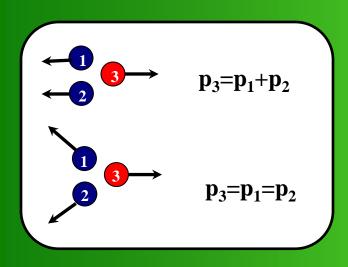
## **Summary**

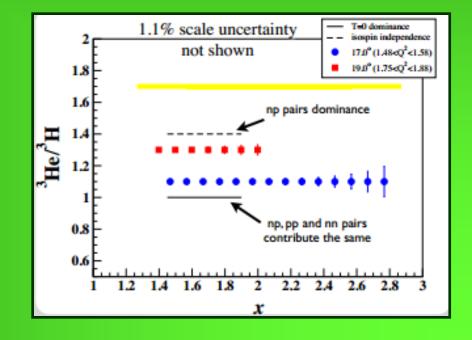
- SRCs have been under the microscope for many decades – 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- New results in the next few years!

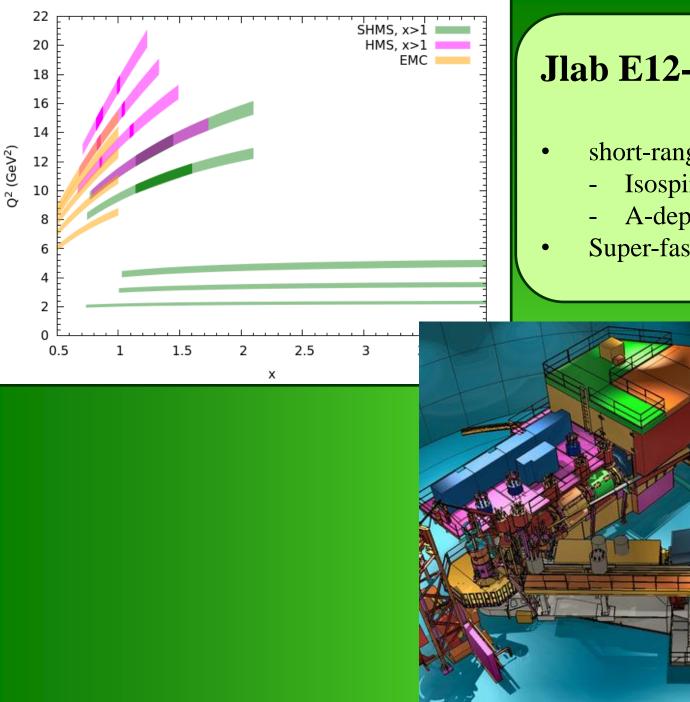


## Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with <sup>3</sup>H and <sup>3</sup>He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei







## **Jlab E12-06-105**

- short-range nuclear structure
  - Isospin dependence
  - A-dependence
- Super-fast quarks