SRCs in x>1 Inclusive Processes

Nadia Fomin University of Tennessee

EMMI Workshop Cold dense nuclear matter:

from short-range nuclear correlations to neutron stars
October 13-16, 2015
GSI, Darmstadt

SRCs in x>1 Inclusive Processes

Nadia Fomin University of Tennessee

EMMI Workshop
Cold dense nuclear matter:

from short - range nuclear correlations to neutron stars
October 13-16, 2015
GSI, Darmstadt

High momentum nucleons – where do they come from?

Independent Particle Shell Model:

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

Proton E_m , p_m distribution modeled as sum of independent shell contributions (arbitrary normalization)

Independent Particle Shell Model:

$$S_{\alpha} = 4\pi \int S(E_m, p_m) p_m^2 dp_m \delta(E_m - E_{\alpha})$$

- For nuclei, S_{α} should be equal to 2j+1 => number of protons in a given orbital
- However, it as found to be only ~2/3 of the expected value
- The bulk of the missing strength it is thought to come from short range correlations

credit: Jonanna Griffin (Jefferson Lab)

repulsive core short range attraction

High momentum nucleons

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation

Difficulty

 High momentum pair can come from SRC (initial state)

OR

 Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

A(e,e'p)

²H(e,e'p) Mainz PRC 78 054001 (2008)

Unfortunately: FSI, MECs overwhelm the high momentum nucleons

FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for $Q^2 = 0.33$ (GeV/c)² [4] compared to calculations [7] with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low p_m data have been re-analyzed and used in this work to determine f_{LT} (color online).

repulsive core short range attraction

High momentum nucleons

- Short Range Correlations

Try inclusive scattering! Select kinematics such that the initial nucleon momentum $> k_f$

High momentum nucleons

$$\frac{d\sigma^{QE}}{d\Omega dE'} \propto \int d\vec{k} \int dE \sigma_{ei} S_i(k, E) \delta(Arg)$$
$$Arg = v + M_A - \sqrt{M^2 + p^2} - \sqrt{M_{A-1}^{*2} + k^2}$$

$$F(y,\mathbf{q}) = \frac{d^2\sigma}{d\Omega d\upsilon} \frac{1}{(Z\overline{\sigma}_p + N\overline{\sigma}_n)} \frac{\mathbf{q}}{\sqrt{M^2 + (y+q)^2}}$$
$$= 2\pi \int_{|y|}^{\infty} n(k)kdk \qquad \text{Ok for A=2}$$

High momentum nucleons

High momentum nucleons

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios

$$1.4 < x < 2 = > 2$$
 nucleon correlation

$$2.4 < x < 3 = > 3$$
 nucleon correlation

- J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
- L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
- L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
- C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
- C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$

$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) +$$

$$\frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$

- To experimentally probe SRCs, must be in the high-momentum region (x>1)
- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios

$$1.4 < x < 2 = > 2$$
 nucleon correlation

$$2.4 < x < 3 = > 3$$
 nucleon correlation

- L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981).
- J. Arrington, D. Higinbotham, G. Rosner, and M. Sargsian (2011), arXiv:1104.1196
- L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
- L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
- C. C. degli Atti and S. Simula, Phys. Lett. B 325, 276 (1994).
- C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

Previous measurements

1.4 < x < 2 = > 2 nucleon correlation

2.4 < x < 3 = > 3 nucleon correlation

Egiyan et al, Phys.Rev.C68, 2003

No observation of scaling for Q²<1.4 GeV²

Kinematic cutoff is A-dependent

- For heavy nuclei, the minimum momentum changes → heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for A>2 → MF contribution persists for longer

E02-019: 2N correlations in A/D ratios

 ^{2}H ³He ⁴He ⁹Be **12**C 27A1* **63Cu** ¹⁹⁷Au

Why not more than two nucleons in a correlation?

$$\sigma(x, Q^{2}) = \sum_{j=1}^{A} A \frac{1}{j} a_{j}(A) \sigma_{j}(x, Q^{2})$$

$$= \frac{A}{2} a_{2}(A) \sigma_{2}(x, Q^{2}) + \frac{A}{3} a_{3}(A) \sigma_{3}(x, Q^{2}) + \dots$$

Further evidence of multi-nucleon correlations

<Q²> (GeV²): *CLAS*: 1.6 *E*02-019: 2.7

- Excellent agreement for x≤2
- Very different approaches to 3N plateau, later onset of scaling for E02-019
- Very similar behavior for heavier targets

E08-014: Study 3N correlations

- Map Q² dependence of 3N plateau
- Verify Isospin Dependence with ⁴⁰Ca and ⁴⁸Ca

Analysis in final stages

If independent:
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \xrightarrow{\sigma_p \approx 3\sigma_n} 0.92$$
If dependent:
$$\frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20\times 28)/48}{(20\times 20)/40} \longrightarrow 1.17$$

E08-014: Study 3N correlations

Back to precision 2N ratios

A	$\theta_e = 18^{\circ}$
$^{3}\mathrm{He}$	2.14 ± 0.04
$^4{ m He}$	3.66 ± 0.07
Be	4.00 ± 0.08
\mathbf{C}	4.88 ± 0.10
Cu	5.37 ± 0.11
Au	5.34 ± 0.11
$\langle Q^2 \rangle$	$2.7~{\rm GeV^2}$
x_{\min}	1.5

Fomin et al, PRL 108 (2012)

Jlab E02-019

 $< Q^2 > = 2.7 \text{ GeV}^2$

Look at nuclear dependence of NN SRCs

Look at nuclear dependence of NN SRCs

$(a_2 = \sigma_\Delta / \sigma_D)!$ Relative #of SRCs

 $n_D^{CONV}(k)$ is the convolution of $n_D(k)$ with the CM motion of correlated pairs in iron

Following prescription from C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53 (1996)

	E02-019	SLAC	CLAS	R_{2N} -ALL	a ₂ -ALL
³ He	1.93 ± 0.10	1.8 ± 0.3	_	1.92 ± 0.09	2.13 ± 0.04
⁴ He	3.02 ± 0.17	2.8 ± 0.4	2.80 ± 0.28	2.94 ± 0.14	3.57 ± 0.09
Ве	3.37 ± 0.17	_	_	3.37 ± 0.17	3.91 ± 0.12
C	4.00 ± 0.24	4.2 ± 0.5	3.50 ± 0.35	3.89 ± 0.18	4.65 ± 0.14
Al	_	4.4 ± 0.6	_	4.40 ± 0.60	5.30 ± 0.60
Fe	_	4.3 ± 0.8	3.90 ± 0.37	3.97 ± 0.34	4.75 ± 0.29
Cu	4.33 ± 0.28	_	_	4.33 ± 0.28	5.21 ± 0.20
Au	$4.26{\pm}0.29$	4.0 ± 0.6	_	4.21 ± 0.26	5.13 ± 0.21

 $a_2 = \sigma_{\underline{N}} / \sigma_{\underline{D}}$ → relative measure of high momentum nucleons

 $R_{2n} \rightarrow$ relative measure of correlated pairs

Both driven by a similar underlying cause?

Separation Energy

For SRCs, a linear relationship with $\langle \epsilon \rangle$ is less suggestive

S.A. Kulagin and R. Petti, Nucl. Phys. A 176, 126 (2006)

A -1/3

Apply exact NM calculations to finite nuclei via LDA

- (A. Antonov and I. Petkov, Nuovo Cimento A 94, 68 (1986)
- (I. Sick and D. Day, Phys. Lett B 274, 16 (1992))
- For A>12, the nuclear density distribution has a common shape; constant in the nuclear interior (bulk)
 → Scale with A
- Nuclear surface contributions grow as A^{2/3} (R²)
- σ per nucleon would be constant with small deviations that go with A^{-1/3}

More details in J. Arrington's and O. Hen's talks (and probably others)

The rest of 6 GeV inclusive data

3.5

3

0.5

1

1.5

2

Х

2.5

Q² dependence features

$$\alpha = 2 - \frac{q^{-} + 2M}{2M} \left(1 + \frac{\sqrt{W^{2} - 4M^{2}}}{W} \right)$$

x > 1: Nuclear PDFs

Overlapping nucleons \rightarrow enhancement of F_2 structure function

Small effect, possible contribution to EMC effect?

Noticeable effect at x>1

How do we get to SFQ distributions

$$F_2^{TMC}(x,Q^2) = \frac{x^2}{\xi^2 r^3} F_2^{(0)}(\xi) + \frac{6M^2 x^3}{Q^2 r^4} (h_2)(\xi) + \frac{12M^4 x^4}{Q^4 r^5} (g_2)(\xi)$$

Measured structure function

$$h_2(\xi, Q^2) = \int_{\xi}^1 du \, \frac{F_2^{(0)}(u, Q^2)}{u^2}$$

$$\xi = \frac{2x}{(1 + \sqrt{1 + \frac{4M^2 x^2}{Q^2}})}$$

$$g_2(\xi, Q^2) = \int_{\xi}^1 dv (v - \xi) \frac{F_2^{(0)}(v, Q^2)}{v^2}$$

• We want $F_2^{(0)}$, the scaling limit $(Q^2 \rightarrow \infty)$ structure function as well as its Q^2 dependence

Schienbein et al, J.Phys, 2008

From structure functions to quark distributions

- 2 results for high x SFQ distributions (CCFR & BCDMS)
 - both fit F_2 to e^{-sx} , where s is the "slope" related to the SFQ distribution fall off.
 - CCFR: $s=8.3\pm0.7$ (Q²=125 GeV/c²)
 - **BCMDS**: $s=16.5\pm0.5$ (Q²: 52-200 GeV/c²)
- We can contribute something to the conversation if we can show that we're truly in the scaling regime
 - Can't have large higher twist contributions
 - Show that the Q² dependence we see can be accounted for by TMCs and QCD evolution

"Super-fast quarks"

- With all the tools in hand, we apply target mass corrections to the available data sets
- With the exception of low Q² quasielastic data E02-019 data can be used for SFQ distributions

N. Fomin et al, PRL 105, 212502 (2010)

Final step: fit $\exp(-s\xi)$ to F_2^0 and compare to **BCDMS** and **CCFR**

 $CCFR - (Q^2 = 125GeV^2)$

 $s=8.3\pm0.7$

BCDMS $- (Q^2: 52-200 \text{ GeV}^2)$

 $s=16.5\pm0.5$

Next: Replace Q² dependent fit with non-singlet QCD evolution

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm} \left(\frac{x}{z}\right) q_i^{\pm}(z).$$

By definition, the result is only physical for $x \le 1$

Fix: use x_D , rather than x_p

Current Status

$$\frac{\partial q_i^{\pm}(x)}{\partial \ln \mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{\pm} \left(\frac{x}{z}\right) q_i^{\pm}(z).$$

By definition, the result is only physical for $x \le 1$

Fix: use x_D , rather than x_p

Rescale F₂⁰ fit with x-dependent correction to match high Q² data

Current Status

- Non-singlet QCD evolution appears to work for nuclear structure functions
- Higher twist contributions appear to persist to tens of GeV²

Jlab E12-06-105

- short-range nuclear structure
 - Isospin dependence
 - A-dependence
- Super-fast quarks

Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with ³H and ³He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei

Summary

- SRCs have been under the microscope for many decades – 6GeV era at Jlab has yielded interesting data
- 12 GeV experiments continue the search
- New results in the next few years!

END

Coming very soon: [Jlab E12-11-112]

- Quasielastic electron scattering with ³H and ³He
- Study isospin dependence of 2N and 3N correlations
- Test calculations of FSI for well-understood nuclei

Jlab E12-06-105

- short-range nuclear structure
 - Isospin dependence
 - A-dependence
- Super-fast quarks