Stylized features of nuclear momentum distributions and the quest for nuclear short-range correlations through the mass table

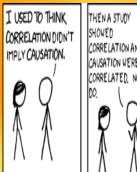
Jan Ryckebusch

Department of Physics and Astronomy, Ghent University

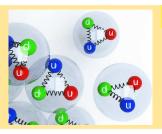
GSI, October 2015

FACULTEIT WETENSCHAPPEN

Talking about nuclear correlations

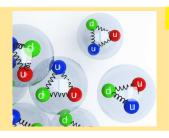


- Whole is different from the sum of the "parts"
- "Parts" can be effective degrees of freedom
- In nuclei: "Parts" are quasi-nucleons moving in a mean-field potential (scheme dependent)
- Momentum correlations: $P^{(2)}(\vec{p}_1, \vec{p}_2) \neq P^{(1)}(\vec{p}_1) P^{(1)}(\vec{p}_2)$
- Spatial correlations: $P^{(2)}(\vec{r}_1, \vec{r}_2) \neq P^{(1)}(\vec{r}_1) P^{(1)}(\vec{r}_2)$
 - 1 short-range: $P^{(2)}\left(\vec{r}_1,\vec{r}_2\right) \neq 0$ for $|\vec{r}_1-\vec{r}_2|\approx R_N$ (nucleon radius)
 - 2 long-range: $P^{(2)}(\vec{r}_1, \vec{r}_2) \neq 0$ for $|\vec{r}_1 \vec{r}_2| \approx R_A$ (nuclear radius)



Independent Particle Model (IPM)

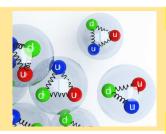
- Nucleons have an identity: $\alpha_i(n_i, l_i, j_i, m_i, t_i)$ and $\psi_{\alpha_i}(\vec{r})$
- Average quantities: $\langle T_p \rangle$, $\langle U_{pot} \rangle$, $\langle \rho \rangle$, . . .



Independent Particle Model (IPM)

- Nucleons have an identity: $\alpha_i(n_i, l_i, j_i, m_i, t_i)$ and $\psi_{\alpha_i}(\vec{r})$
- Average quantities: $\langle T_{\rho} \rangle$, $\langle U_{pot} \rangle$, $\langle \rho \rangle$,...

FIXED IDENTITY



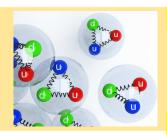
FIXED IDENTITY

Independent Particle Model (IPM)

- Nucleons have an identity: $\alpha_i(n_i, l_i, j_i, m_i, t_i)$ and $\psi_{\alpha_i}(\vec{r})$
- Average quantities: $\langle T_p \rangle$, $\langle U_{pot} \rangle$, $\langle \rho \rangle$, . . .

Long Range Correlations (LRC)

- Nucleons loose their identity
- Spatio-temporal fluctuations: ΔT_p , ΔU_{pot} , $\Delta \rho$, . . .
- lacktriangle "Most" nucleons get involved ($\sim R_A$)
- Energy scale $\Delta E \approx 10 \text{ MeV}$
- Experimentally observed and theoretically understood [giant resonances in $\gamma^{(*)}(A, X)$]



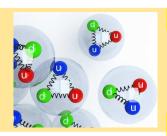
BLURRED IDENTITY

Independent Particle Model (IPM)

- Nucleons have an identity: $\alpha_i(n_i, l_i, j_i, m_i, t_i)$ and $\psi_{\alpha_i}(\vec{r})$
- Average quantities: $\langle T_p \rangle$, $\langle U_{pot} \rangle$, $\langle \rho \rangle$, . . .

Long Range Correlations (LRC)

- Nucleons loose their identity
- Spatio-temporal fluctuations: ΔT_p , ΔU_{pot} , $\Delta \rho$, . . .
- "Most" nucleons get involved ($\sim R_A$)
- Energy scale $\Delta E \approx 10 \text{ MeV}$
- Experimentally observed and theoretically understood [giant resonances in $\gamma^{(*)}(A, X)$]



BLURRED IDENTITY

Independent Particle Model (IPM)

- Nucleons have an identity: $\alpha_i(n_i, l_i, j_i, m_i, t_i)$ and $\psi_{\alpha_i}(\vec{r})$
- Average quantities: $\langle T_p \rangle$, $\langle U_{pot} \rangle$, $\langle \rho \rangle$, . . .

Short Range Correlations (SRC)

- Nucleons loose their identity
- Spatio-temporal fluctuations: ΔT_p , ΔU_{pot} , $\Delta \rho$, . . .
- lacktriangle "Few" nucleons get involved ($\sim R_N$)
- Energy scale $\Delta E \approx 100 \text{ MeV}$
- Experimentally observed and theoretically understood [2N knockout in A(e, e'X)]

Research goals: comprehensive picture of SRC

SET GOAL.
MAKE PLAN.
GET TO WORK.
STICK TO IT.
REACH GOAL.

"hammer events" in $(\nu_{\mu}, \mu^- pp)$ (arXiv:1405.4261)

- Develop an approximate flexible method for computing nuclear momentum distributions
- Study the mass and isospin dependence of SRC
- Provide a unified framework to establish connections with measurable quantities that are sensitive to SRC
 - 1 Inclusive A(e, e') at $x_B \gtrsim 1.5$
 - 2 Magnitude of the EMC effect
 - Two-nucleon knockout: $A(e, e'pN), A(\nu_{\mu}, \mu^{-}pp)$
- Learn about SRC physics (nuclear structure AND reactions) in a unified framework

Nuclear correlation operators (I)

Shift complexity from wave functions to operators

$$\mid \Psi
angle = rac{1}{\sqrt{\mathcal{N}}} \widehat{\mathcal{G}} \mid \Phi
angle \qquad \text{with,} \qquad \mathcal{N} \equiv \langle \Phi \mid \widehat{\mathcal{G}}^\dagger \widehat{\mathcal{G}} \mid \Phi
angle$$

 $| \Phi \rangle$ is an IPM single Slater determinant

■ Nuclear correlation operator $\widehat{\mathcal{G}}$

$$\widehat{\mathcal{G}} \approx \widehat{\mathcal{S}} \left(\prod_{i < j = 1}^{A} \left[1 + \widehat{I}(i, j) \right] \right) ,$$

 Major source of correlations: central (Jastrow), tensor and spin-isospin

$$\hat{I}(i,j) = -g_c(r_{ij}) + f_{\sigma\tau}(r_{ij})\vec{\sigma}_i \cdot \vec{\sigma}_j \vec{\tau}_i \cdot \vec{\tau}_j + f_{t\tau}(r_{ij})\hat{S}_{ij}\vec{\tau}_i \cdot \vec{\tau}_j.$$

Nuclear correlation operators (II)

Expectation values between correlated states Ψ can be turned into expectation values between uncorrelated states Φ

$$\langle \Psi \mid \widehat{\Omega} \mid \Psi \rangle = \frac{1}{\mathcal{N}} \langle \Phi \mid \widehat{\Omega}^{eff} \mid \Phi \rangle$$

"Conservation Law of Misery": multi-body operators

$$\widehat{\Omega}^{\text{eff}} = \widehat{\mathcal{G}}^{\dagger} \ \widehat{\Omega} \ \widehat{\mathcal{G}} = \left(\sum_{i < j = 1}^{A} \left[1 - \widehat{l}(i, j) \right] \right)^{\dagger} \widehat{\Omega} \ \left(\sum_{k < l = 1}^{A} \left[1 - \widehat{l}(k, l) \right] \right)$$

 $\widehat{\Omega}^{\text{eff}}$ is an *A*-body operator

- Truncation procedure for short-distance phenomena: K. Wilson's OPE: $\Psi^{\dagger}(\vec{R} - \frac{\vec{r}}{2})\Psi(\vec{R} + \frac{\vec{r}}{2}) = \sum_{n} c_{n}(\vec{r})O_{n}(\vec{R}) \ (\mid \vec{r} \mid \approx 0)$
- Low-order correlation operator approximation (LCA)
- LCA: *N*-body operators receive SRC-induced (*N* + 1)-body corrections

Including SRC: LCA method for one-body operators

■ LCA effective operator corresponding with a one-body operator $\sum_{i=1}^{A} \widehat{\Omega}^{[1]}(i)$ (corrects for SRC)

$$\widehat{\Omega}^{\text{eff}} \approx \widehat{\Omega}^{\text{LCA}} = \sum_{i=1}^{A} \widehat{\Omega}^{[1]}(i) + \sum_{i < j=1}^{A} \left\{ \widehat{\Omega}^{[1],l}(i,j) + \left[\widehat{\Omega}^{[1],l}(i,j) \right]^{\dagger} + \widehat{\Omega}^{[1],q}(i,j) \right\}$$

- Two types of SRC corrections (two-body)
 - 1 linear in the correlation operator:

$$\widehat{\Omega}^{[1],!}(i,j) = \left[\Omega^{[1]}(i) + \Omega^{[1]}(j)\right] \widehat{I}(i,j)$$

2 quadratic in the correlation operator:

$$\widehat{\Omega}^{[1],\mathsf{q}}(i,j) = \widehat{I}^{\dagger}(i,j) \big[\widehat{\Omega}^{[1]}(i) + \widehat{\Omega}^{[1]}(j) \big] \widehat{I}(i,j).$$

Norm $\mathcal{N} \equiv \langle \Phi \mid \widehat{\mathcal{G}}^{\dagger} \widehat{\mathcal{G}} \mid \Phi \rangle$: aggregated SRC effect

■ LCA expansion of the norm $\mathcal N$

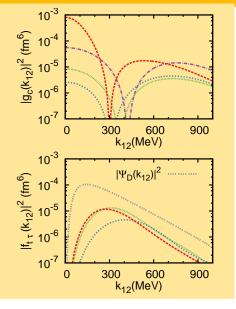
$$\mathcal{N} = 1 + \frac{2}{A} \sum_{\alpha < \beta} \text{nas} \langle \alpha \beta \mid \hat{I}^{\dagger}(1,2) + \hat{I}^{\dagger}(1,2) \hat{I}(1,2) + \hat{I}(1,2) \mid \alpha \beta \rangle_{\text{nas}}.$$

- 1 | $\alpha\beta\rangle_{\text{nas}}$: normalized and anti-symmetrized two-nucleon IPM-state
- 2 $\sum_{\alpha < \beta}$ extends over all IPM states $|\alpha\rangle \equiv |n_{\alpha}l_{\alpha}j_{\alpha}m_{j_{\alpha}}t_{\alpha}\rangle$,
- \blacksquare $(\mathcal{N}-1):$ measure for aggregated effect of SRC in the ground state
- Aggregated quantitative effect of SRC in A relative to ²H

$$\frac{\textit{R}_2(\textit{A}/^2\textit{H})}{\mathcal{N}(^2\textit{H})-1} = \frac{\text{measure for SRC effect in }\textit{A}}{\text{measure for SRC effect in }^2\textit{H}} \; .$$

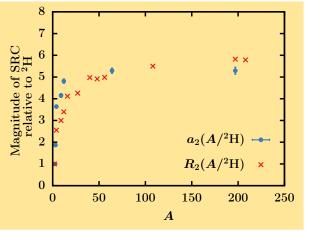
- Input to the calculations for $R_2(A/^2H)$:
 - 1 HO IPM states with $\hbar\omega = 45A^{-1/3} 25A^{-2/3}$
 - 2 *A*-independent universal correlation functions $[g_c(r), f_{t\tau}(r), f_{\sigma\tau}(r)]$

Central and tensor correlation function



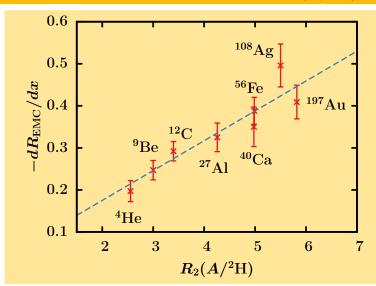
- the g_C (k₁₂) looks like the correlation function of a monoatomic classical liquid (reflects finite-size effects)
- the $g_c(k_{12})$ are ill constrained
- $|f_{t\tau}(k_{12})|^2$ is well constrained! (*D*-state deuteron wave function)
- $|f_{t\tau}(k_{12})|^2 \sim |\Psi_D(k_{12})|^2$
 - very high relative pair momenta: central correlations
- moderate relative pair momenta: tensor correlations

$a_2(A/^2H)$ from A(e,e') at $x_B \gtrsim 1.5$ and $R_2(A/^2H)$



- 1 A ≤ 40: strong mass dependence in SRC effect
- 2 A > 40: soft mass dependence
- 3 SRC effect
 saturates for A large
 (for large A
 aggregated SRC
 effect per nucleon is
 about 5× larger
 than in ²H)

Magnitude of EMC effect versus $R_2(A/^2H)$



LCA can predict magnitude of EMC effect for any $A(N, Z) \ge 4$

Single-nucleon momentum distribution $n^{[1]}(p)$

■ Probability to find a nucleon with momentum p

$$n^{[1]}(p) = \int \frac{d^2 \Omega_p}{(2\pi)^3} \int d^3 \vec{r}_1 \ d^3 \vec{r}_1' \ d^{3(A-1)} \{ \vec{r}_{2-A} \} e^{-i\vec{p} \cdot (\vec{r}_1' - \vec{r}_1)}$$

$$\times \Psi^*(\vec{r}_1, \vec{r}_{2-A}) \Psi(\vec{r}_1', \vec{r}_{2-A}).$$

lacktriangle Corresponding single-nucleon operator \hat{n}_p

$$\hat{n}_p = \frac{1}{A} \sum_{i=1}^A \int \frac{d^2 \Omega_p}{(2\pi)^3} e^{-i\vec{p} \cdot (\vec{r}_i' - \vec{r}_i)} = \sum_{i=1}^A \hat{n}_p^{[1]}(i).$$

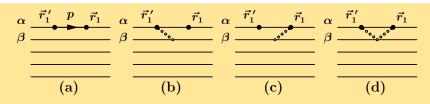
- Effective correlated operator \hat{n}_p^{LCA} (SRC-induced corrections to IPM \hat{n}_p are of two-body type)
- Normalization property $\int dp \ p^2 n^{[1]}(p) = 1$ can be preserved by evaluating \mathcal{N} in LCA

Single-nucleon momentum distribution $n^{[1]}(p)$

Probability to find a nucleon with momentum p

$$n^{[1]}(p) = \int \frac{d^2 \Omega_p}{(2\pi)^3} \int d^3 \vec{r}_1 \ d^3 \vec{r}_1' \ d^{3(A-1)} \{ \vec{r}_{2-A} \} e^{-i\vec{p} \cdot (\vec{r}_1' - \vec{r}_1)}$$

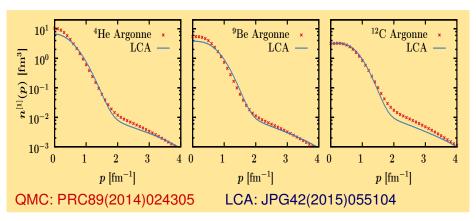
$$\times \Psi^*(\vec{r}_1, \vec{r}_{2-A}) \Psi(\vec{r}_1', \vec{r}_{2-A}).$$



(a): IPM contribution

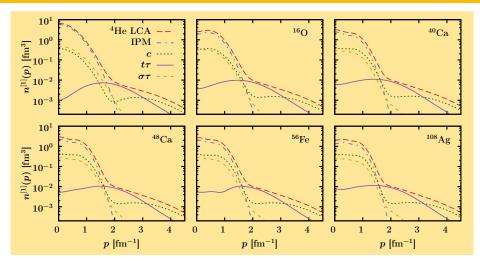
(b)-(d): SRC contributions

$n^{[1]}(p)$ for light nuclei: LCA (Ghent) vs QMC (Argonne)



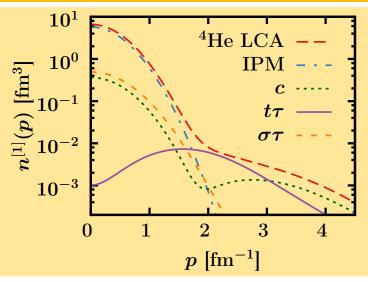
- **1** $p \lesssim p_F = 1.25 \text{ fm}^{-1}$: $n^{[1]}(p)$ is "Gaussian" (IPM PART)
- **2** $p \gtrsim p_F$: $n^{[1]}(p)$ has an "exponential" fat tail (CORRELATED PART)
- 3 fat tail in QMC and LCA are in reasonable agreement

Major source of correlated strength in $n^{[1]}(p)$?



- 1 1.5 $\lesssim p \lesssim$ 3 fm⁻¹ is dominated by tensor correlations
- **2** central correlations substantial at $p \gtrsim 3.5 \text{ fm}^{-1}$

Major source of correlated strength in $n^{[1]}(p)$?



1 1.5 $\lesssim p \lesssim$ 3 fm⁻¹ is dominated by tensor correlations

2 central correlations substantial at $p \gtrsim 3.5$ fm⁻¹ (3) (2) (2)

Isospin dependence of correlations: pp, nn and pn

$$n^{1/1}(p) \equiv n_{pp}^{1/2}(p) + n_{nn}^{1/2}(p) + n_{pn}^{1/2}(p)$$

$$n^{1/2} = n_{pp}^{1/2}(p) + n_{pn}^{1/2}(p)$$

$$n^{1/2} = n_{pp}^{1/2}(p) + n_{pn}^{1/2}(p)$$

$$n^{1/2} = n_{pp}^{1/2}(p)$$

$$n^{1/2} = n_{$$

The fat tail is dominated by "pn" (momentum dependent)

$$n^{[1]}(p) \equiv n^{[1]}_{pp}(p) + n^{[1]}_{nn}(p) + n^{[1]}_{pn}(p) \qquad r_{N_1 N_2}(p) \equiv n^{[1]}_{N_1 N_2}(p)/n^{[1]}(p)$$

■ $r_{N_1N_2}(p)$: relative contribution of N_1N_2 pairs to $n^{[1]}(p)$ at p

Naive IPM:

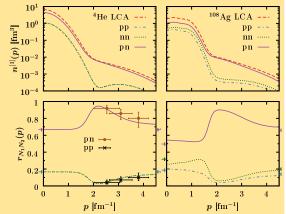
$$r_{pp} = \frac{Z(Z-1)}{A(A-1)},$$
 $r_{nn} = \frac{N(N-1)}{A(A-1)},$
 $r_{pn} = \frac{2NZ}{A(A-1)}.$

■ Data extracted from ⁴He(*e*, *e'pp*)/⁴He(*e*, *e'pn*) (PRL 113, 022501) and ¹²C(*p*,*ppn*) (Science 320, 1476) assuming that

 $r_{pp} pprox r_{nn}$

Isospin dependence of correlations: pp, nn and pn

$$n^{[1]}(p) \equiv n^{[1]}_{pp}(p) + n^{[1]}_{nn}(p) + n^{[1]}_{pn}(p) \qquad r_{N_1N_2}(p) \equiv n^{[1]}_{N_1N_2}(p)/n^{[1]}(p)$$



The fat tail is dominated by "pn" (momentum dependent)

- $r_{N_1 N_2}(p)$: relative contribution of $N_1 N_2$ pairs to $n^{[1]}(p)$ at p
- Naive IPM:

$$r_{pp} = \frac{Z(Z-1)}{A(A-1)},$$

 $r_{nn} = \frac{N(N-1)}{A(A-1)},$
 $r_{pn} = \frac{2NZ}{A(A-1)}.$

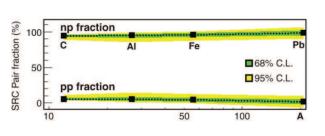
■ Data extracted from ⁴He(*e*, *e'pp*)/⁴He(*e*, *e'pn*) (PRL 113, 022501) and ¹²C(*p*,*ppn*) (Science 320, 1476) assuming that

Imbalanced strongly interacting Fermi systems

Sciencexpress

Momentum sharing in imbalanced Fermi systems

O. Hen, 1* M. Sargsian, 2 L. B. Weinstein, 3 E. Piasetzky, 1 H. Hakobyan, 4,5 D. W. Higinbotham, 6 N



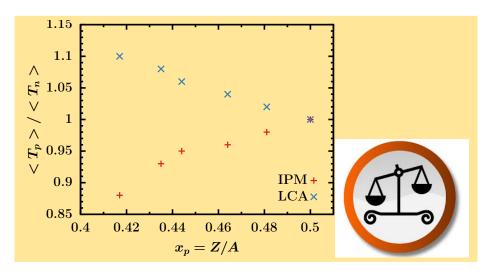
LCA predicts that ≈90% of correlated pairs is "pn", and ≈5% is"pp" (A independent)

Average kinetic energy per nucleon $\langle T_N \rangle$

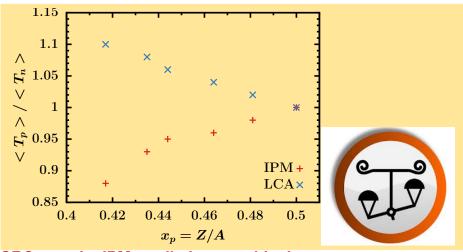
A	$x_p = \frac{Z}{A}$	$ \langle T_N \rangle$ (MeV)						$\langle T_p \rangle$	$\overline{/\langle T_n \rangle}$
		IPM (p)	IPM (n)	LCA (p)	LCA(n)	Perug	UCOM	IPM	LCA
² H	0.500	14.95	14.93	20.95	20.91			1.00	1.00
⁴ He	0.500	13.80	13.78	25.28	25.23		19.63	1.00	1.00
⁹ Be	0.444	15.81	16.58	28.91	27.33			0.95	1.06
¹² C	0.500	16.08	16.06	28.96	28.92	32.4	22.38	1.00	1.00
¹⁶ O	0.500	15.61	15.59	29.48	29.43	30.9	23.81	1.00	1.00
²⁷ AI	0.481	16.61	16.92	30.93	30.26		25.12	0.98	1.02
⁴⁰ Ca	0.500	16.44	16.42	31.23	31.18	33.8	27.72	1.00	1.00
⁴⁸ Ca	0.417	15.64	17.84	33.04	30.06		27.05	0.88	1.10
⁵⁶ Fe	0.464	16.71	17.45	32.33	31.13	32.7		0.96	1.04
¹⁰⁸ Ag	0.435	16.48	17.81	33.55	31.16			0.93	1.08

- **1** SRC substantially increase $\langle T_N \rangle$ (factor of about 2)
- **2** after including SRC: minority component has largest $\langle T_N \rangle$

Predictions for $\langle T_p \rangle / \langle T_n \rangle$ ratio



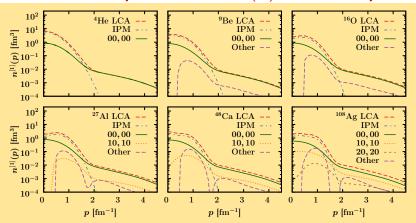
Predictions for $\langle T_p \rangle / \langle T_n \rangle$ ratio



SRC turn the IPM predictions upside down

Quantum numbers of SRC-susceptible IPM pairs?

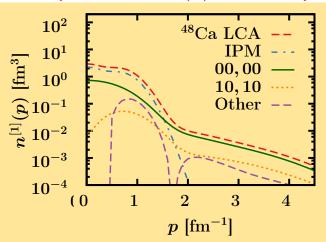
 $n^{[1],corr}$ stems from correlation operators acting on IPM pairs. What are relative quantum numbers (nl) of those IPM pairs?



$$\sum_{nl} \sum_{n'l'} n_{nl,n'l'}^{[1],corr}(p) = n^{[1],corr}(p)$$

Quantum numbers of SRC-susceptible IPM pairs?

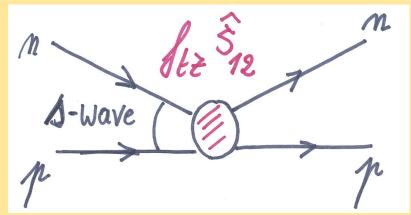
 $n^{[1],corr}$ stems from correlation operators acting on IPM pairs. What are relative quantum numbers (nl) of those IPM pairs?



Major source of SRC: correlations acting on (n = 0 | l = 0) IPM pairs

Stylized features of nuclear SRC

■ Physical picture from LCA: for 1.5 $\lesssim p \lesssim$ 3 fm⁻¹ the SRC are mainly due to tensor-induced scattering between IPM pn pairs in a relative *s*-state



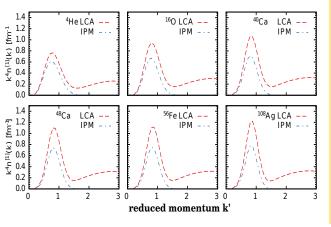
Stylized features of nuclear SRC

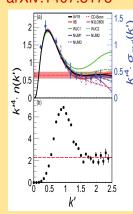
- Physical picture from LCA: for 1.5 $\lesssim p \lesssim 3$ fm⁻¹ the SRC are mainly due to tensor-induced scattering between IPM pn pairs in a relative *s*-state
- In tensor-dominated momentum range: nuclear Hamiltonian can be captured by the stylized Hamiltonian

$$\begin{split} \widehat{\mathcal{H}} &\approx \sum_{\tau=p,n} \int d^{3}\vec{r} \psi_{\tau}^{\dagger}(\vec{r}) \left[-\frac{\hbar^{2}}{2m_{N}} \nabla_{\vec{r}}^{2} + U_{\tau}(\vec{r}) \right] \psi_{\tau}(\vec{r}) \\ &+ \int d^{3}\vec{r} d^{3}\vec{R} \psi_{p}^{\dagger} \left(\vec{R} + \frac{\vec{r}}{2} \right) \psi_{n}^{\dagger} \left(\vec{R} - \frac{\vec{r}}{2} \right) \psi_{n} \left(\vec{R} \right) \psi_{p} \left(\vec{R} \right) \lambda_{t\tau} \left(\vec{r} \right) \end{split}$$

- Physics of a two-component and strongly correlated Fermi gas subject to an *s*-wave contact interaction is described by Tan (Ann. of Phys. 322 (2008) 2971)
 - Landmark of a contact interaction: $n^{[1]}(p) \sim Cp^{-4}$

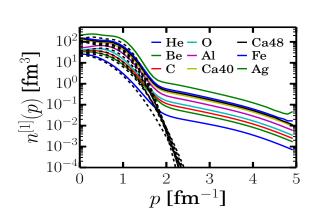
Approximate p^4 scaling of the $n^{[1]}(p)$

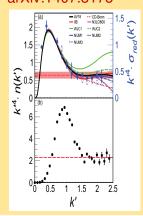




- Momentum scale: $k' \equiv \frac{p}{p_F}$
- IPM is approximately Gaussian: stochastic collisions
- Fat tail is the landmark of strong correlations
 - *p*-dependence of tail is universal

Approximate p^4 scaling of the $n^{[1]}(p)$





- Momentum scale: $k' \equiv \frac{p}{p_F}$
- IPM is approximately Gaussian: stochastic collisions
- Fat tail is the landmark of strong correlations
 - p-dependence of tail is universal

Two-nucleon momentum distribution (TNMD)

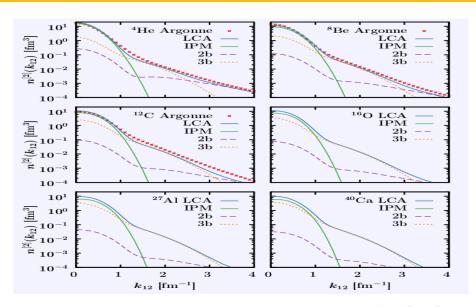
$$n^{[2]}\left(\vec{k}_{12},\vec{P}_{12}\right)$$

- Belongs to the class of four-point correlation functions (two tagged nucleons)
- Corresponding two-nucleon operator $\hat{n}_{k_{12}P_{12}}$
- In LCA: effective correlated operator $\widehat{n}_{k_{12}P_{12}}^{LCA}$ (SRC-induced corrections are two-body ("2b") and three-body ("3b") operators)
- Relative TNMD: distribution of the relative momentum of the tagged pair

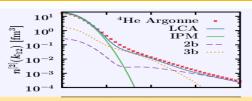
$$n^{[2]}(k_{12}) = \int d^3 \vec{P}_{12} d^2 \Omega_{k_{12}} n^{[2]} \left(\vec{k}_{12}, \vec{P}_{12} \right)$$

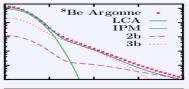
■ No direct connection between $n^{[2]}$ $\left(\vec{k}_{12}, \vec{P}_{12}\right)$ and SRC dominated two-nucleon knockout cross sections

Relative TNMD: tail is dominated by "3-body" effects

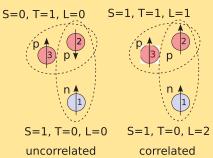


Relative TNMD: tail is dominated by "3-body" effects



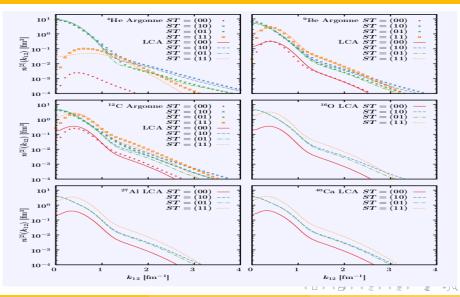


Correlations through the mediation of a third particle:

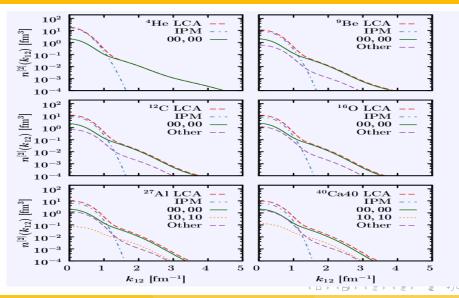


Feldmeier et al., PRC 84 (2011), 054003

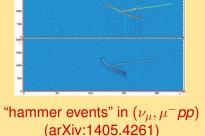
Relative TNMD: quantum numbers of tagged pairs \neq quantum numbers of correlated pair



Correlated part of relative TNMD: dominated by *s*-wave scattering!



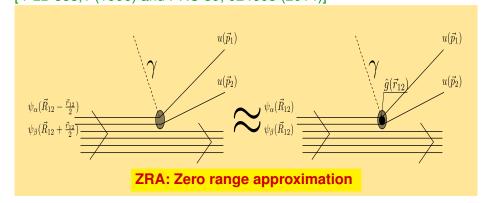
Exclusive two-nucleon knockout A(e, e'NN)



- The (virtual) photon-nucleon interaction is a one-body operator
- Two-nucleon knockout is the hallmark of SRC (one hits a nucleon and its correlated partner)
 - $1 \quad A(e, e'pN)$
 - 2 $A(\nu_{\mu}, \mu^{-}pp)$
 - A(p, pNN)

Exclusive A(e, e'NN) along the LCA lines

The fact that SRC-prone IPM NN pairs are mostly in a close-proximity $(n_{12} = 0, l_{12} = 0)$ state has important consequences for the EXCLUSIVE A(e, e'NN) cross sections [PLB 383,1 (1996) and PRC 89, 024603 (2014)]



Exclusive A(e, e'NN) along the LCA lines

The fact that SRC-prone IPM NN pairs are mostly in a close-proximity $(n_{12} = 0, l_{12} = 0)$ state has important consequences for the EXCLUSIVE A(e, e'NN) cross sections [PLB 383,1 (1996) and PRC 89, 024603 (2014)]

1 A(e, e'NN) cross section factorizes according to

$$\frac{d^{8}\sigma}{d\epsilon'd\Omega_{\epsilon'}d\Omega_{1}d\Omega_{2}dT_{p_{2}}}(\textbf{e},\textbf{e}'\textbf{NN}) = K\sigma_{\textbf{eNN}}\left(\textbf{k}_{+},\textbf{k}_{-},\textbf{q}\right) \textbf{\textit{F}}_{\textbf{h}_{1},\textbf{h}_{2}}^{(\textbf{D})}\left(\textbf{\textit{P}}\right)$$

 $F_{h_1,h_2}^{(D)}(P)$: FSI corrected conditional probability to find a dinucleon with c.m. momentum P in a relative $(n_{12}=0,l_{12}=0)$ state

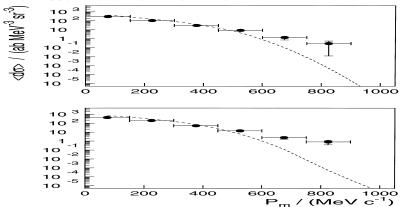
A dependence of the A(e, e'pp) cross sections is soft (much softer than predicted by naive Z(Z-1) counting)

$$\frac{A(e,e'pp)}{^{12}\mathrm{C}(e,e'pp)} \approx \frac{N_{pp}(A)}{N_{pp}(^{12}\mathrm{C})} \times \left(\frac{T_A(e,e'p)}{T_{^{12}\mathrm{C}}(e,e'p)}\right)^{1-2}$$

3 C.m. width of SRC susceptible pairs is "large" (in ρ -space)

Factorization of the A(e, e'pp) cross sections

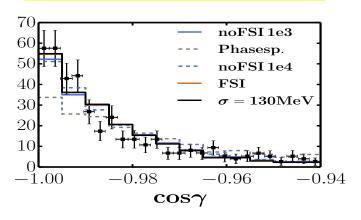
¹²C(e, e'pp) @ MAMI (Mainz) (Physics Letters B **421** (1998) 71.)



For $P \lesssim 0.5$ GeV c.m. motion of correlated pairs in 12C Data prove the proposed is mean-field like $\left(\exp\frac{-P^2}{2\sigma_{om}^2}\right)!$ factorization in terms of $F_{h_1,h_2}^{(D)}(P)$.

A(e, e'NN): Effect of the final-state interactions?

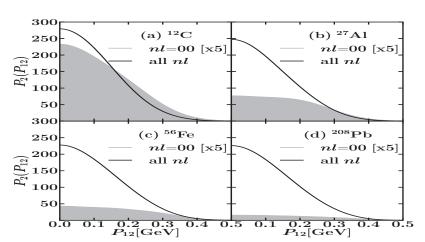
Opening-angle distribution of 4 **He**(e, e'pp)



- 1 FSI (eikonal model) reduces the cross sections
- **2** FSI marginally affects the angular distributions (FSI preserves factorization properties)

C.m. motion of correlated pp pairs

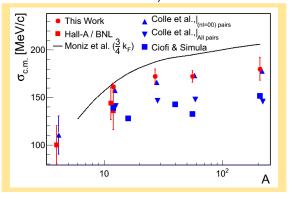
PHYSICAL REVIEW C 89, 024603 (2014)



Width of c.m. distribution is a lever to discriminate between SRC-prone IPM pairs and the other IPM pairs

C.m. motion of correlated pp pairs

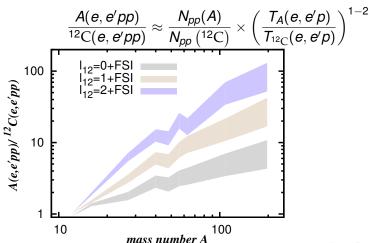
DATA IS PRELIMINARY! (COURTESY OF O. HEN AND E. PIASETZKY)



- Analysis of exclusive A(e, e'pp) for ¹²C, ²⁷Al, ⁵⁶Fe, ²⁰⁸Pb by Data Mining Collaboration at Jefferson Lab
- Distribution of events against P is fairly Gaussian
- σ_{c.m.}: Gaussian widths from a fit to measured c.m. distributions

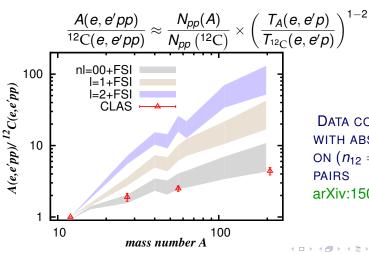
Mass dependence of the A(e, e'pp) cross sections

PREDICTION: A dependence of A(e, e'pp) c.s. is soft (much softer than predicted by naive Z(Z-1) counting)



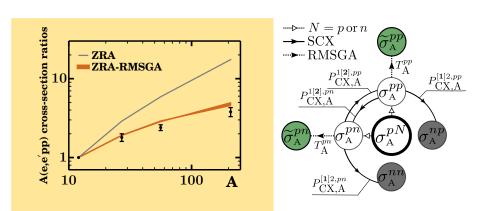
Mass dependence of the A(e, e'pp) cross sections

PREDICTION: A dependence of A(e, e'pp) c.s. is soft (much softer than predicted by naive Z(Z-1) counting)



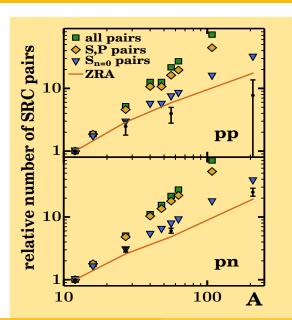
DATA COMPATIBLE WITH ABSORPTION ON $(n_{12} = 0, l_{12} = 0)$ PAIRS arXiv:1503.06050

Mass dependence of pp correlations [1503.06050]



- Effect of final-state interactions in the eikonal approximation
- 2 Effect of single-charge exchange (SCX) included
- **3** Pb to C cross-section ratio for $(e, e'pp) \approx 4$

A dependence of number of pp and pn SRC pairs



- Analysis of A(e, e'pp)and A(e, e'p) ($A=^{12}C$, ^{27}AI , ^{56}Fe , ^{208}Pb) in "SRC" kinematics (Data Mining Collaboration @JLAB)
- FSI corrections applied to the data
- Reaction-model calculations in the large phase space: importance sampling
- Relative number of SRC pp-pairs and pn-pairs

CONCLUSIONS (I)

Stylized features of nuclear SRC: The mass and isospin dependence of the magnitude of the 2N and 3N correlations can be captured by some general principles

- LCA: efficient and realistic way of computing the SRC contributions to nuclear momentum distributions (NMD)
 - 1 Magnitude of EMC effect and A(e,e')/D(e,e') scaling factor $(x_B \gtrsim 1.5)$ can be predicted in LCA
 - Light nuclei: LCA predictions for tails are in line with those of QMC
 - **3** LCA predictions for $\langle T_N \rangle$ and radii are "realistic" (consistency checks)
 - 4 Natural explanation for the universal behavior of the NMD tails
- Number of SRC-prone pairs in a nucleus A(N, Z) is proportional with the number of pairs in a relative $(n_{12} = 0, l_{12} = 0)$ state

CONCLUSIONS (II)

- Insights from study of SRC contribution to NMD has implications for exclusive A(e, e'NN):
 - 1 Scaling behavior of cross section ($\sim F(P)$) (CONFIRMED!)
 - 2 Very soft mass dependence of cross section (CONFIRMED!)
 - 3 Peculiar c.m. width of the SRC-susceptible pairs (CONFIRMED!)
- Aggregated effect of SRC: A independent correlation operators acting on close-proximity pairs in a nodeless relative S state
- Generally applicable techniques for quantifying SRC: two-body effects in neutrino reactions, role of SRC in exotic forms of hadronic matter, . . .
- SRC induced spatio-temporal fluctuations are measurable and significant (scales are set)

Selected publications

- J. Ryckebusch, M. Vanhalst, W. Cosyn
 "Stylized features of single-nucleon momentum distributions" arXiv:1405.3814 and Journal of Physics G 42 (2015) 055104.
- C. Colle, O. Hen, W. Cosyn, I. Korover, E. Piasetzky, J. Ryckebusch, L.B. Weinstein "Extracting the Mass Dependence and Quantum Numbers of Short-Range Correlated Pairs from A(e, e'p) and A(e, e'pp) Scattering" arXiv:1503.06050 and Physical Review C 92 (2015), 024604.
- C. Colle, W. Cosyn, J. Ryckebusch, M. Vanhalst "Factorization of electroinduced two-nucleon knockout reactions" arXiv:1311.1980 and Physical Review C 89 (2014), 024603.
- Maarten Vanhalst, Jan Ryckebusch, Wim Cosyn "Quantifying short-range correlations in nuclei" arXiv:1206.5151 and Physical Review C 86 (2012), 044619.
- Maarten Vanhalst, Wim Cosyn, Jan Ryckebusch "Counting the amount of correlated pairs in a nucleus" arXiv:1105.1038 and Physical Review C 84 (2011), 031302(R).