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Nuclear forces and neutron-rich nuclei 
with S.K. Bogner, H. Hergert, J.D. Holt, J. Menéndez, T. Otsuka, J. Simonis, T. Suzuki  
 
 

 
 
 
 
 
 
Nuclear forces and neutron stars 
with C. Drischler, K. Hebeler, T. Krüger, J.M. Lattimer, 
C.J. Pethick, V. Somá, I. Tews 

 
based on same strong interactions! 



Chiral effective field theory for nuclear forces 
             NN  3N   4N 

Separation of scales: low momenta       breakdown scale ~500 MeV 

include long-range pion physics 
 

few short-range couplings, 
fit to experiment once 
 

systematic: can work to desired 
accuracy and obtain error estimates  
 

consistent electroweak interactions 
and matching to lattice QCD 

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,… 



Chiral effective field theory and many-body forces 
Separation of scales: low momenta       breakdown scale ~500 MeV 

consistent NN-3N-4N interactions 
 

3N,4N: 2 new couplings to N3LO 
+ no new couplings for neutrons 
 
 
 
 
 
ci from πN and NN Meissner, LAT 2005  
 
 
cD, cE fit to light nuclei only 

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,… 

             NN  3N   4N 

(2011)    (2006) 

derived in (1994/2002) 
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The oxygen anomaly Otsuka, Suzuki, Holt, AS, Akaishi, PRL (2010) 

            without 3N forces, NN interactions too attractive 
3N forces crucial for location of neutron dripline 
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Ab initio calculations of the oxygen anomaly 
impact of 3N forces confirmed in large-space calculations  
 

based on same SRG-evolved 
NN+3N interactions 
 
 
 
 
 
 
 
 
 
using different many-body methods: 
Coupled Cluster theory/CCEI Hagen et al., PRL (2012), Jansen et al., PRL (2014) 

Multi-Reference In-Medium SRG and IT-NCSM Hergert et al., PRL (2013) 

Self-Consistent Green’s Function methods Cipollone et al., PRL (2013) 



Frontier of ab initio calculations at A~50 

53,54Ca masses measured at 
ISOLTRAP using new 
MR-TOF mass spectrometer 
 
establish prominent N=32 
shell closure in calcium 
 
excellent agreement with 
theoretical NN+3N prediction 



Chiral effective field theory for nuclear forces 
             NN  3N   4N 

Separation of scales: low momenta       breakdown scale ~500 MeV 

cD, cE don’t contribute for neutrons 
because of Pauli principle and 
pion coupling to spin, also for c4 
Hebeler, AS (2010) 
 
 
 
 
 
 
 
 

all 3- and 4-neutron forces are 
predicted to N3LO! 

Weinberg, van Kolck, Kaplan, Savage, Wise, Bernard, Epelbaum, Kaiser, Machleidt, Meissner,… 



Complete N3LO calculation of neutron matter 
first complete N3LO result Tews, Krüger, Hebeler, AS, PRL (2013) 

includes uncertainties from NN, 3N (dominates), 4N  

good agreement with 
Quantum Monte Carlo 
calculations at low densities 



Quantum Monte Carlo for neutron matter Gezerlis, Tews, et al., PRL (2013) 

based on new local chiral EFT potentials, 
order-by-order convergence up to saturation density 

and PRC (2014) 



Quantum Monte Carlo for neutron matter Gezerlis, Tews, et al., PRL (2013) 

based on new local chiral EFT potentials, 
order-by-order convergence up to saturation density 
 
 
excellent agreement with 
perturbative calculations 
for low cutoffs (~400 MeV) 

and PRC (2014) 
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Complete N3LO calculation of neutron matter 
first complete N3LO result Tews, Krüger, Hebeler, AS, PRL (2013) 

includes uncertainties from NN, 3N (dominates), 4N 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

excellent agreement with other methods! 



Neutron skin of 208Pb 
probes neutron matter energy/pressure, 
neutron matter band predicts 
neutron skin of 208Pb: 0.17±0.03 fm (±18% !) 
Hebeler, Lattimer, Pethick, AS, PRL (2010) 

Brown (2000), Typel, Brown (2001) 



Neutron skin of 208Pb 
probes neutron matter energy/pressure, 
neutron matter band predicts 
neutron skin of 208Pb: 0.17±0.03 fm (±18% !) 
Hebeler, Lattimer, Pethick, AS, PRL (2010) 
 
 

in excellent agreement with extraction from dipole polarizability 
0.156+0.025-0.021 fm Tamii et al., PRL (2011)  

 
PREX: neutron skin from parity-violating electron-scattering at JLAB 
goal II: ±0.06 fm Abrahamyan et al., PRL (2012) 

 
MAMI: coherent pion photoproduction 
0.15+0.04-0.06 fm Tabert et al., PRL (2014) 



Nuclear forces and nuclear matter 
first results for asymmetric matter 
with arbitrary proton fraction 
Drischler, Hebeler, AS, in prep. 



Calculations of asymmetric matter Drischler, Soma, AS, PRD (2014) 

Esym comparison with extraction from isobaric analogue states (IAS) 
3N forces fit to 3H, 4He properties only 
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Neutron matter and neutron stars 



Chart of neutron star masses 
from Jim Lattimer 

two 2 Msun neutron stars observed 
Demorest et al, Nature (2010), 
Antoniadis et al., Science (2013) 



Equation of state/pressure for neutron-star matter (includes small Ye,p) 
 
 
 
 
 
 
 
 
 
 
 
  

pressure below nuclear densities agrees with standard crust equation of 
state only after 3N forces are included 

crust EOS 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS, PRL (2010), ApJ (2013) 



Equation of state/pressure for neutron-star matter (includes small Ye,p) 
 
 
 
 
 
 
 
 
 
 
pressure below nuclear densities agrees with standard crust equation of 
state only after 3N forces are included 
 
extend uncertainty band to higher densities using piecewise polytropes 
allow for soft regions 
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constrain high-density EOS by causality, require to support 2 Msun star  
 
 
 
 
 
 
 
 
 
 
 
 
low-density pressure sets scale, chiral EFT interactions provide strong 
constraints, ruling out many model equations of state 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS, PRL (2010), ApJ (2013) 
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constrain high-density EOS by causality, require to support 2 Msun star  
 
 
 
 
 
 
 
 
 
 
 
 
low-density pressure sets scale, chiral EFT interactions provide strong 
constraints, ruling out many model equations of state  
 
predicts neutron star radius: 9.7-13.9 km for M=1.4 Msun (±18% !) 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS, PRL (2010), ApJ (2013) 
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constrain high-density EOS by causality, require to support 2 Msun star 

Impact on neutron stars Hebeler, Lattimer, Pethick, AS, PRL (2010), ApJ (2013) 

central densities 
for 1.4 Msun star: 1.8-4.4 ρ0 
  
not very high momenta!  



Summary 
Chiral EFT opens up unified description of matter from lab to cosmos 
 
 
 
 
 
3N force are an exciting frontier for nuclear physics and astrophysics 
 
Nuclear forces and their impact on neutron-rich nuclei 
S.K. Bogner, H. Hergert, J.D. Holt, J. Menéndez, T. Otsuka, J. Simonis, T. Suzuki  
 
on neutron-rich matter and neutron stars 
C. Drischler, K. Hebeler, T. Krüger, J.M. Lattimer, C.J. Pethick, V. Somá, I. Tews  
 

Correlations are included 


