

A. Lehmann, M. Böhm, M. Pfaffinger, F. Uhlig, and the bachelor students A. Grigull, D. Mieling, S. Stelter

- MCP lifetime measurements
- Work at new Hamamatsu 2 inch MCP-PMTs
- Experiences with May CERN beam data
- Summary

Albert Lehmann

	Sensor ID	Integral charge (June 2, 2015) [mC/cm2]	Diff. charge (maximum) [mC/cm²/d]	# of mea- surements	# of QE scans	Comments
Photonis XP85112	9001223	9036	13.5	156	15	Start: 23 Aug. 11 ongoing
	9001332	6992	21.8	60	8	Start: 12 Dec. 12 ongoing
	9001393	3925	11	24	4	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X	JT0117 (M16)	2086	14.1	86	7	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	7644	30.1	36	6	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	4414	20.1	31	7	Start: 21 Oct. 13 ongoing
BINP	1359	3616	10.6	90	8	Start: 21 Oct. 11 Stop: 06 May 13
	3548	6674	11.8	133	12	Start: 21 Oct. 11 ongoing

	Sensor ID	Integral charge (June 2, 2015) [mC/cm2]	QE start [%]	QE latest [%]	QE latest / QE start [%]	Comments
Photonis XP85112	9001223	9036	22.11	6.9	31%	Start: 23 Aug. 11 ongoing
	9001332	6992	22.62	22.18	98%	Start: 12 Dec. 12 ongoing
	9001393	3925	19.05	19.41	102%	Start: 23 Jan. 14 ongoing
Hamamatsu R10754X	JT0117 (M16)	2086	19.97	9.32	47%	Start: 23 Aug. 11 Stop: 24 Jul. 12
	KT0001 (M16M)	7644	21.71	16.77	77%	Start: 20 Aug. 13 ongoing
	KT0002 (M16M)	4414	21.14	15.06	71%	Start: 21 Oct. 13 ongoing
BINP	1359	3616	12.27	9.06	74%	Start: 21 Oct. 11 Stop: 06 May 13
	3548	6674	12.23	4.52	37%	Start: 21 Oct. 11 ongoing

Lifetime of MCP-PMTs (June 2015)

- Photonis 9001332: no Q.E degrading observed yet at ~7 C/cm²
- 1 inch ALD Hamamatsu MCP-PMTs: both close or beyond 5 C/cm²
- MCP-PMTs with ALD layers: very good performance to 6 C/cm²

Albert Lehmann

Other ongoing DIRC Work

Self-built picoammeter to accelerate lifetime measurements

- Potential-free pA-measurements up to 2 kV
- Planned application: measure MCP-in currents at high photon rates
- First tests and calibrations have started
- New 2 inch Hamamatsu MCP-PMTs (8x8 pixels)
 - Readout boards and HV dividers ready
 - First gain and QE scans done for 1 tube (JS0022) [using VME-DAQ]
 - Second tube (JS0025) showed short circuit between PC and MCP-in (sent back to Hamamatsu)
- New 2 inch Hamamatsu MCP-PMTs (6x128 pixels)
 - Readout not yet ready

Surface Scan of 8x8 Hamamatsu

Hamamatsu #JS0022 MCP Count Rates

Empty pixels come from broken QDC/TDC channels in VME-DAQ

Gain between 1.e6 and 2.e6 at 3.3 kV (comparable to data sheet)

Albert Lehmann

QE Scan of 8x8 Hamamatsu (JS0022)

- QE structures across surface roughly comparable with Hamamatsu in-house measurement, but ours with much better resolution
- QE values slightly worse in our measurement, but applied methods were different
- QE still quite non-uniform with rather strange fine structures

Albert Lehmann

80-100

■ 60-80 ■ 40-60

= 20-40

0.20

In both MCP-TOF stations 1 SciTil and 1 MCP counter each

MCP-TOF1 (MCP-out, SciTil_I, SciTil_r) at one Padiwa (no reftime needed)

- MCP-TOF2 (MCP-out, SciTil_I, SciTil_r) at one Padiwa (no reftime needed)
- Different TRB-boards for MCP-TOF1 and MCP-TOF2 (reftime necessary)

• 4 TOF infos \rightarrow determination of time resolution for each counter possible

Albert Lehmann

MCP-TOF vs Event ID

- Many structures visible in MCP-TOF spectra (better at beam time end)
- Clear separation of pions and protons
- Double structure seen in both pion and proton TOF peak

Albert Lehmann

MCPtof vs RefTime Difference

- In principle this should be a narrow vertical line, but we observe a correlation → MCPtof depends on difference of reference time
- Explains "double peak structure" in many MCPtof spectra
- More observations:
 - RefTime difference can jump to other values
 - Shape of correlation does not always look the same

Albert Lehmann

TDC Info vs Event-ID (8 GeV/c) -SciTil 1 right SciTil 1 left TDC left – TDC-right TDC vs EvtNum at SegId 2 TDC vs EvtNum at SegId 4 SciTilDiff1 vs EvtNum $\times 10^3$ 4000 4000 ıoʻ 10 3500 3500 10 3000 3000 10 10 2500 2500 250 2000 2000 2000 10 1500 1500 1500 10 10 1000 1000 1000 500 500 500 -500 450 400 -350 -300 -500 -450 -400 -350 -300 20

Upstream TOF-station (#1): main signals at same Padiwa

- Jumps in TDC peak seen also within same Padiwa/TRB-boards
- Meaningful time difference only when both TDC peaks at nominal position (551k [12.8%] good events out of 4.3M total)

TDC Info vs Event-ID (8 GeV/c) SciTil 2 right SciTil 2 left TDC left – TDC-right TDC vs EvtNum at Segld 98 TDC vs EvtNum at SegId 100 SciTilDiff2 vs EvtNum

Downstream TOF-station (#2): main signals at same Padiwa

-300

-350

■ Jumps in TDC peak seen at lower rates (~35 ns apart) → mixing of leading edge and trailing edge?

-250

-200

-150

Meaningful time difference only when both TDC peaks at nominal position (only 138k [3.2%] good events out of 4.3M total)

Albert Lehmann

-350

-300

-250

-200

-150

DIRC Meeting -- Uppsala -- June 9, 2015

TOF vs Counter ID

- Clear beam profiles seen in upstream MCP (#1) pixel count rates
- Beam profile seen in hodo rates (SedID >= 192)
 - Hodo efficiency from MCP-TOF: ~74%
 - Hodo efficiency from SciTil-TOF: ~76%

Albert Lehmann

TOF and PID for Different Momenta

- Pions and protons separable up to 7/8 GeV/c
- TOF roughly corrected for Reftime difference
- TOF not corrected for timewalk (could be significant: up to 50% better)

-

TOF resolution here: ~160 ps (only very rough reftime diff correction)

- TOF resolution seen in special configurations (thin slices in Tot1, Tot2 and reftime diff): 100 120 ps
- SciTil (left-right) resolution with MCP pixel cut: 70 ps

Albert Lehmann

Lifetime of MCP-PMTs

- 9001223 at 9 C/cm², but only 31% QE left
- 9001332 still good (no degradation) at 7 C/cm²
- 9001393 with 2 ALD-layers: no degradation seen up to ~4 C/cm²
- KT0001 and KT0002 at 7.6 C/cm² and 4.4 C/cm², respectively
- Started measuring 8x8 pixel Hamamatsu 2 inch tubes
- First look at CERN MCP-TOF data from May
 - Problems with reference time
 - Problems with TDC stability (leading/trailing edge mix-up?)
 - Fiber hodoscope with ~75% efficiency
 - Clear pion/proton separation for <8 GeV/c</p>