Status Report

- Germanium Activities

Marcell Steinen

Helmholtz-Institut Mainz

Panda LIII. Coll. Meeting, Uppsala, 06/09/15

• Beam time?!?

Germanium setup (reminder)

- 48 Euroball crystals
- 16 triple cryostats
- e.-m. cooled
- Backward angles

Marcell Steinen

- Added more details to the target system geometry in PANDAroot
- Titanium beam pipe

- Added more details to the target system geometry in PANDAroot
- Titanium beam pipe
- Added expected energies of 11 A Be

Marcell Steinen

- Pair production important for higher energies
- Adding escape peaks back to photopeak

beam time!

- Problems should be fixed soon
- Test with electrons in Mainz in july
- Hopefully a short test in Jülich sometime in autumn

"beam time"

- Measurements with beam and active preamplifier at COSY in may
- beam time had to be canceled shortly!
- Active reset didn't work
- Vacuum leakage of the germanium

Summary / Outlook

- Progress in efficiency studies, no big changes in results
- Adding escape peak result should improve the efficiency further
- New beam time tests foreseen in the near future
- Setup is ready, detector in repair

Thanks for your attention

Backup slides

Marcell Steinen

10/9

- Pair production important for higher energies
- Adding escape peaks back to photopeak

- Risetime t₁₀₉₀
- No change in mean value
- Shape changes

Days PANDA

Marcell Steinen

- 2D correlation of t₁₀₉₀ and energy
- Drastic change visible
- Correction by fitting pol3 on 1332 keV peak and than event per event correction
- Not finally optimized
- Double peak structure of t₁₀₉₀ regognizable

Days PANDA

13/9

Peak shape of 1.332 keV ⁶⁰Co Peak

Normalized counts [a.u.] ö Normalized counts [a.u.] ∞ 0 days PANDA 0 days PANDA 27 days PANDA 27 days PANDA 48 days PANDA 48 days PANDA 75 days PANDA 75 days PANDA 0.6 0.6 0.4 0.4 0.2 0.2 1290 1300 1310 1320 1340 1280 1290 1300 1310 1320 1340 1280 1330 1350 1330 1350 Energy [keV] Energy [keV]

 Visible improvement of peak shape due to risetime correction

Corrected peak shape of 1.332 keV ⁶⁰Co Peak

- Correction seems also feasible for other peaks
- 1172 keV line as example
- 75 days spectrum as example

Comparison of corrected (red) and uncorrected (blue) sprectrum

Marcell Steinen

15/9

- Overview of data during irradiation
- Better correction for FWHM than FWTM
- Still room for improvements

DEGAS Detector

DEGAS Detector

I. Kojouharov, GSI, Darmstadt

1. Status of the Cryostat development

Improved thermal contact junction

GSI

DEGAS capsules cold frame

NUSTAR week, 2015 , March 02-06,

GSI

DEGAS Detector

2. Cooling engine

I. Kojouharov, GSI, Darmstadt

Sunpower cooling engine Type GT:

- 16 W cooling power
- 240 W electrical

Under test:

- strong cooling power

- heavy energy dissipation – need air cooling with a defined flow. An option – cooling jacket.

- strong vibrations. There is a vibration reductor and this option is to be investigated. The detector construction has to consider vibration strong reduction if not an elimination.

Conclusion: the use of SP GT or CT cooling engines needs further R&D, therefore initially the MMR X-Cooler has to be considered and an interface for easy transition to SP CT-cooler to be provided.

GSI-

NUSTAR week, 2015, March 02-06,

GSI

Marcell Steinen

DEGAS Detector

 Ratio confirms that correction is better for FWHM Comparison of corrected (red) and uncorrected (blue) FWTM/FWHM ratio

Marcell Steinen

21/9

Irradiation test @ COSY in Jülich

 Better noise conditions due to improved grounding of the setup

- 4 *10¹³ protons accumulated
 ~50 days PANDA
- Limitation by radiation protection and beam time

Irradiation test: Simulation

- Geometry of test setup build in PandaRoot
- 10⁸ events, 1.6 *10⁵ n
 → 2.1*10⁹ n/cm² total
 (~75 days of ₱ANDA)
- More detail in geometry and analysis in progress
- Confirmation via neutron detector measurements foreseen

- Spectrum in spill pause
- Activation of surrounding material gives additional lines
- Useful for calibration, but additional background

Calibrated spectrum

Evolution of line shape:

- Broadening
- Low energy tail
- Position shift due to calibration issues in the analysis

- Degradation of resolution
- FWHM seems to flatten at 8.5 keV
- No corrections (risetime, variation of window size) applied yet!

 $\lambda = \frac{Full \ width \ at \ tenth \ maximum}{Full \ width \ at \ half \ maximum}$

- Gaussian: $\lambda = 1.82$
- Ratio is steadily growing

Energy-Risetime3090-Correlation channel 01

Energy-Risetime3090-Correlation channel 01

Start of beam time

End of beam time

 Energy-risetime Correlation offers room for improvements!

- Hardware and radiation damage on detector
- Used older prototype for second beam time
- Seems to have less radiation damage
- Not analyzed yet

Nylon, new part will be vespel

New detector design

- Triple crystal detector
- Electro.-mech. cooler
- HV and readout "onboard"
- Flexible neck

 Prototype is planned to be finished until end of 2014 / begin of 2015

Electro mechanical cooler

- Ortec X Cooler II
- Placed outside of the PANDA barrel (space, magnetic field)
- Limited but sufficient cooling power for three crystals
- Resolution of prototype detector deteriorates slighty due to higher temperature of 95 K (2.25 keV @ 1.332 MeV)

Simulation of the detector

- Efficiency and background simulations
- PandaRoot framework (ROOT, Geant4)
- 2.9*10⁹ n/cm² accumulated over
 100 days of PANDA conditions
 @ 10⁶ interactions/s

Simulation of neutron load of the germanium crystals prim. inter. point [cm] Neutron flux [kHz] 15 Dist. to Distance of crystal utron flux per Cryst 120 130 140 150 Polar angle of crystal center [°] 160 Simulation of full-energy-peak-efficiency Rel. loss Full-energy-peak-efficiency [$\%_{
m j}$ with target and 9 tracking system 8 without target and tracking system ç 7 ~ 6 due to material [%] 5 3 2 0^t 2 7 8 γ energy [MeV]