Time resolution studies with TOFPET ASIC

Lukas Gruber^a

^aStefan Meyer Institute for Subatomic Physics, Vienna, Austria ^bGSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

> PANDA TOF meeting Uppsala, Sweden June 8, 2015

Paul Bühler^a, Johann Marton^a, Herbert Orth^b, Carsten Schwarz^b, Dominik Steinschaden^a, Ken Suzuki^a

Outline

- TOFPET evaluation kit
- First steps (clock, HV, connections, threshold)
- Dark count measurements
- Timing with test pulses
- Timing with laser
- Timing with scintillator and source
- Summary and outlook

Evaluation kit

First steps

- Documentation, firmware, demo programs, etc. provided by PETsys (GoogleDrive)
- · Getting started with test routines and calibration
- Test functionality of ML605 board running a Build-In System Test
- Check the communication between the two boards (FPGA and TOFPET) by testing clock and HV

Figure 1.1: System diagram

TOFPET ASIC evaluation kit software user guide v3.1, PETsys, March 2015

320 MHz clock

The PAB should receive a 320 MHz clock from the FPGA

Clock signal measured at the PAB:

\rightarrow Communication between FPGA and TOFPET works

HV supply

- The PAB has an internal HV supply module which can be controlled via the FPGA
- The HV DAC has to be calibrated by comparing the set voltage (V_{set}) and the actual voltage (V_{meas}) at the output of the mezzanine bords
- Shows again that communication works

Simple linear regression:

$$V_{meas} = m \times V_{set} + b$$

Parameters m,b are used to produce a calibration file and calibrate the HV DAC.

SiPM connection

- The mezzanine board connects to 4 Hamamatsu 16 channel arrays
- We need an adapter to connect single SiPMs

We will prepare a print board with ST4 on one side and connectors for SiPMs on the other side.

Threshold setting

- Two thresholds: vth_T (time) and vth_E (energy, validation)
- Time over threshold (ToT) is defined by rising edge of vth_T and falling edge of vth_E
- 6-bit DAC: threshold ranges from 0 to 63 with an inverted scale
- Each unit increase corresponds to a step of about 10 mV at the amplifier output
- Amplifier output baseline has some offset (rel. to DAC) which has to be determined
- The amplifier produces a \sim 20 mV signal for 1 p.e. for a Hamamatsu SiPM with

Dark counts

S10362-11-050C 1 x 1 mm²

Dark counts

S12572-050P $3 \times 3 \text{ mm}^2$

Timing with test pulses

Figure 4.1: Test pulse paths

- Use GPIO_USER_P to trigger laser
- Insert GPIO_USER_P also to TOFPET \rightarrow start
- Illuminate SiPM with laser
- Use SiPM signal as stop
- Determine time resolution by measuring the delay between trigger and SiPM signal

PANDA TOF meeting - 00.00.2015

PANDA TOF meeting - 08.06.2015

Not possible to count and select photons from ToT spectrum. Broadening of timing spectrum. No knowledge about exact number of detected photons.

"Single" (few) photons

Timing with scintillator + SiPM

TOFPET board

Time resolution (σ_{tile}) estimated by time difference between the two SiPM signals: $\sigma_{tile} \sim \sigma_{diff}$ / 2

Timing with scintillator + SiPM

vth_T set to low values for timing (depending on HV – see below) vth_E = 5 – 35 DAC above baseline vth_E set to higher values so that there is no noise and few dark counts (depending on HV) + additional cut on ToT spectrum ($\Delta E > 0.8$ MeV)

> E.g.: **HPK S12572-025C** vth_E = 5 for 67.1 V vth_E = 34 for 69.5 V

E.g.: Ketek PM3360 vth_E = 4 for 28.6 V vth_E = 18 for 31.0 V

Timing with scintillator + SiPM

Summary and outlook

- Results are very preliminary
- Time resolution of about 30 35 ps using test pulses
- Time resolution of about 45 ps with laser and SiPM
- Time resolution of about 120 ps with Hamamatsu 050C and EJ-228
- Time resolution of about 180 ps with Ketek 3360TS and EJ-228

To do:

- Update firmware and software (new release available)
- Redo calibration (TDC, amplifier) some channels show worse resolution?
- More systematic measurements needed
- Some results not yet fully understood (timing, ToT spectra, coincidences, ...)
- Improve SiPM connection (Samtec connector)
- Use new SiPMs (current SiPMs have been used at test beam)
- Noise on signal? Connection? (high vth_E needed)

Thank you !