## How to **simulate cosmic ray** and **solar wind** interaction with **astrophysical materials** in the **laboratory**

Hermann Rothard (CNRS) (*rothard@ganil.fr*)

#### **CIMAP-CIRIL-Ganil**

Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS UMR 6252/ENSICAEN/Université de Caen-Basse Normandie UCBN)

Boulevard Henri Becquerel, BP 5133, F-14070 Caen Cedex 05, France



astrophysical materials:

carbonaceous, Silicates, and Ices

laboratory simulation:

*solar wind, ions trapped in magnetospheres,* and *cosmic rays* 

at heavy **ion accelerators** GANIL Aribe, Irrsud, SME, HE + GSI Unilac: from **keV** to **GeV** 







Infrared absorption spectroscopy FTIR TOF-SIMS, QMS, QCM

## Radiation effects (ices, silicates)







**Dust grains** 

Solar wind, cosmic rays, planetary magnetic fields



## **Radiation Processing of Astrophysical ices**





« Laboratoire d'Accueil » for *interdisciplinary research* at CAN (Grand Accélérateur National d'Ions Lourds)

Teaching(University, ENSI engineering school;<br/>Master + Ph. students, postdocs, visitors, ...)Scientific Animation(organization of conferences, seminars,<br/>workshops; interdisciplinary Programm Advisory<br/>Committee iPAC; user meetings; networks ...)

Matériaux, Lasers et Instrumentation

**Research:** 

**Interaction Ion - Matière** 







Cimap



## Ice-processing effects caused by UV and cosmic rays



Gerakines et al. J. Geo. Res. (2001) 106 381





> 10<sup>3</sup> s
Microscopy, LEED,
FTIR (structure,
chemistry,radiolysis)
+ many more



Coulomb Explosion ?

Thermal Spike ? M.Toulemonde et al. NIMB 212 (2003) 346

(Excitons?)

(non-) linear cascade

G. Schiwietz, K. Czerski, M. Roth, F. Staufenbiel, P.L. Grande

NIM B226 (2004) 683



#### Energy loss as a function of projectile energy



## Ion Nuclear Tracks

Particle Tracks (≈ 10 MeV/u) in photographic Emulsion





## **Experimental approaches**

**FTIR infrared absorption spectroscopy**: ice bulk analysis based on the infrared absorptions due to molecular vibrations.

#### **TOF-SIMS** mass spectrometry:

surface analysis via the desorbed ions by measuring their time-of-flight from the target to the detector

#### **QMS** mass spectrometry

**QCM** (quartz crystal microbalance)

and many more ...



#### **Complementary and Emerging Techniques** for Astrophysical Ices Processed in the Laboratory

M.A. Allodi • R.A. Baragiola • G.A. Baratta • M.A. Barucci • G.A. Blake • P. Boduch • J.R. Brucato • C. Contreras • S.H. Cuylle • D. Fulvio • M.S. Gudipati • S. Ioppolo • Z. Kaňuchová • A. Lignell • H. Linnartz • M.E. Palumbo • U. Raut • H. Rothard • F. Salama • E.V. Savchenko • E. Sciamma-O'Brien • G. Strazzulla

Space Science Review (2013)180:101-175

Spectroscopy: Raman UV-visible THz Luminescence

Chromatography (organics)

# Fourier Transform Infrared Specroscopy

ap

## experimental set-up CASIMIR: FTIR of condensed gases at 14 K



ap

## FTIR Fourier Transform Infrared Absorption Spectroscopy: molecular vibrations

plenty of information:

Absorption Line Position + Shape:

identification of molecules, environment ("dangling bonds": porosity ...) structure (crystalline, amorphous)

#### Integral (Surface)

columnar density (thickness) evolution with projectile fluence: disappearance and synthesis of molecules



#### but:

detection of symmetric molecules (O2, N2...) difficult





#### Space observation:

ISO Infrared Space Observatory, protostellar source W33a

#### Laboratory simulation:

UV photons

protons

heavy ions

S. Pilling et al. Astronomy & Astrophysics 509 (2010) A87



## the "gas mixing and deposition machine"





Nap

......



FTIR spectrum: Measuring the column density



#### Evolution of Column density with projectile fluence



Synthesis of Molecules by Heavy Ion Irradiation: $CO_2$  ice: $CO_1$ ,  $CO_3$ ,  $O_3$ ,  $O_3$ ,  $C_3$ CO ice: $CO_2$ ,  $O_3$ ,  $C_3O_2$ ,  $C_5O_2$ ,  $C_2O_1$ ,  $C_3$ ,  $C_4O_2/C_7O_2$ 

#### Comparison to proton / UV photon irradiation:

Destruction / Formation Cross Sections  $\sigma_d/\sigma_f$ 

Radiochemical  
Yield 
$$G = 100 \frac{\sigma_d}{S_e}$$

| Molecule                      | Projectile                                            | σ (10 <sup>–15</sup> cm²) | G            | Reference                                                                     |
|-------------------------------|-------------------------------------------------------|---------------------------|--------------|-------------------------------------------------------------------------------|
| СО                            | 50 MeV Ni <sup>13+</sup><br>537 MeV Ni <sup>24+</sup> | 100<br>30                 | -5.9<br>-2.5 | Seperuelo et al. A&A (2010)                                                   |
|                               | 200 keV H+                                            | 0.28                      | -0.79        | Loeffler, Baratta, Palumbo, Strazulla,<br>Baragiola A&A (2005) <b>435</b> 587 |
|                               | 10.2 eV photo                                         | ns 0.0003                 |              | Loeffler et al. (2005)                                                        |
| CO <sub>2</sub>               | 50 MeV Ni <sup>13+</sup><br>537 MeV Ni <sup>24+</sup> | 20<br>18                  | 1.2          | Seperuelo et al. A&A (2010)                                                   |
|                               | 200 keV H+                                            | 6                         | 0.62         | Loeffler et al. (2005)                                                        |
|                               | 10.2 eV photo                                         | ns 0.017                  | 0.59         | Loeffler et al. (2005)                                                        |
| C <sub>3</sub> O <sub>2</sub> | 50 MeV Ni <sup>13+</sup><br>537 MeV Ni <sup>24+</sup> | 3<br>25                   | 0.18         | Seperuelo et al. A&A (2010)                                                   |
|                               | 200 keV H+                                            |                           | 0.14         | Palumbo [private communication, see ApJ (2008) <b>685</b> 1033]               |
| C <sub>2</sub> O              | 50 MeV Ni <sup>13+</sup>                              |                           | 0.12         | Seperuelo et al. A&A (2010)                                                   |
|                               | 200 keV H+                                            |                           | 0.37         | Palumbo [private communication, see ApJ (2008) <b>685</b> 1033]               |

## CO ice: disappearence of CO Molecules during Nickel Ion Irradiation:















#### **Ion-target interaction**

#### Irradiation experiment



Implantation experiment



lons are stopped in the target



#### ANR IGLIAS P. Boduch CIMAP/Caen E. Dartois IAS/Orsay





CiMap





#### **AODO : ionic part of the sputtering**





Nap

Complementary results...

# XY-TOF-SIMS with cold head

designed by J.M. Ramillon (CIMAP)





GSI Unilac M1 (2014)

Rafael Martinez, A. Domaracka, H. Rothard (CIMAP),Lars Breuer (Univ. Duisburg-Essen), M. Bender, D. Severin (GSI)

thanks to A. Wucher (Univ. Duisburg-Essen)





#### Astrophysical Application: Silicates exposed to solar wind and cosmic rays



cimap@ganil.fr

## rothard@ganil.fr

