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PART I

LEPTON PAIR PRODUCTION

in collisions of relativistic nuclei
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1. Introduction and main results
for e+e− pairs

1.1. Basic numbers

For the RHIC and LHC colliders, the charge numbers of nuclei
Z1 = Z2 ≡ Z and their Lorentz factors γ1 = γ2 ≡ γ are given as
follows...

Colliders and the Born cross sections for lepton pair production

Collider Z γ σe+e−
Born [kb] σ

µ+µ−
Born [b]

RHIC, Au-Au 79 108 36.0 0.23

LHC, Pb-Pb 82 3000 227 2.6

6



The cross section of one pair production in the Born approxima-

tion (described by Feynman diagram of Fig. 1)
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Fig. 1

with two photon production was obtained many years ago by

Landau, Lifshitz (1934) and Racah (1937):
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σBorn =
28

27π
σ0

[
L3 − 2.198L2 + 3.821L− 1.632

]
,

where

σ0 =
(Z1αZ2α)2

m2
, α =

1

137
, L = ln(γ1γ2) & 10 ,

m is the electron mass.

1.2. Importance

Since the Born cross section is huge (see Table 1), pair production

can be a serious background for many experiments:

Hencken, Sadovsky, Kharlov, ALICE Note ALICE-INT-2002-11.
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It is also important for the problem of beam lifetime and luminosity
of colliders (see the reviews Bertulani, Baur. Phys. Rep. 163, 299 (1988);

Baur et al. Phys. Rep. 364, 359 (2002) and Klein, NIM A59 (2001) 51 ).

It means that the various corrections to the Born cross section are of
great importance.

Similar there are ideas to use multiple pair production as a possible
trigger for ultra-peripheral collisions at ALICE. A good knowledge of
the multiple pair production cross section is needed for this.

Since the parameter Zα may be not small
(Zα ≈ 0.6 for Au-Au and Pb-Pb collisions),
the whole series in Zα has to be summed to obtain the cross section
with sufficient accuracy.
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Fortunately, there is important small parameter

1

L
< 0.11 , L = ln (γ2) ,

therefore, it is sufficient to calculate the corrections in the leading

logarithmic approximation (LLA) only.

In the literature, there were a lot of controversial and incorrect
statements in papers devoted to this subject. Some corresponding
references and critical remarks can be found in

Ivanov, Schiller, Serbo. Phys. Lett. B 454 (199) 155;

Lee, Milstein. Phys. Rev. A 61 (2000) 032103;

Phys. Rev. A 64 (2001) 032106 (2001);

Lee, Milstein, Serbo. Phys. Rev. A 65, 022102 (2002);

Aste, Baur, Hencken, Trautmann, Scharf. EPJ C23 (2002) 545
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1.3. Results for e+e− pair production

The exact cross section for one pair production σ1 can be written

in the form

σ1 = σBorn + σCoul + σunit ,

where two different types of corrections have been distinguished.

The typical electric field of nucleus is very strong

E ∼ Ze

ρ2 γ = γ Zα ESchwinger at ρ =
~

mec

since γ Zα = 60 for RHIC and 1800 for LHC.
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The Coulomb corrections σCoul correspond to multi-photon exchange

of the produced e± with nuclei:

Fig. 2

They were calculated by D.Yu. Ivanov, A. Schiller, V.G. Serbo. Phys.

Lett. B 454 (1999) 155.
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The unitarity corrections σunit correspond to the exchange of the
virtual light-by-light blocks between nuclei

Fig. 3

They were calculated by R.N. Lee, A.I. Milstein, V.G. Serbo. Phys.
Rev. A 65 (2002) 022102
and updated by
U.D. Jentschura, K. Hencken, V.G. Serbo (in preparation)
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It was found that the Coulomb corrections are large while the

unitarity corrections are small:

Coulomb and unitarity corrections to the e+e− pair production

Collider
σCoul
σBorn

σunit
σBorn

RHIC, Au-Au −25% −5.0%

LHC, Pb-Pb −14% −4.0%
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Multiple production of e+e− pairs

Z + Z → Z + Z + n(e+e−)

If Zα is small, the corresponding cross section grows as Ln:

σn = Cn
(Zα)4n

m2 Ln , n ≥ 2 ,

C2 = 2.21 , C3 = 0.443 , C4 = 0.119 .

R.N. Lee, A.I. Milstein, V.G. Serbo. Phys. Rev. A 65 (2002) 022102
U.D. Jentschura, K. Hencken, V.G. Serbo (in preparation)
In particular,

σ2 = 0.114 barn for Ca-Ca at LHC.
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For large values of Zα there are only numerical calculations of σn for

a particular values of γ

A.Alscher, K.Henken, D. Trautman, G.Baur. Phys. Rev. C 59 (1999) 811

.

NOW FEW WORDS ABOUT THEORY
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2. Coulomb correction to σ1 for e+e− pair
production

Selection of the leading diagrams. Let M be the sum of amplitudes
Mn

n′ of Fig. 4. The case n ≥ 2 and n′ ≥ 2 is difficult for calculation,
but the corresponding contribution is small!

Fig. 4
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It can be presented in the form

M =
∑

nn′≥1

Mn
n′ = MBorn +M1 + M̃1 +M2 ,

M1 =
∑

n′≥2

M1
n′ , M̃1 =

∑

n≥2

Mn
1 , M2 =

∑

nn′≥2

Mn
n′ .

MBorn contains the one–photon exchange both with the first and

the second nucleus;

M1 (M̃1) contains the one–photon exchange only with the first

(second) nucleus;

M2 has no one–photon exchange.
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According to this classification we write the total cross section as

σ = σBorn + σ1 + σ̃1 + σ2

where

dσBorn ∝ |MBorn|2 ,

dσ1 ∝ 2Re (MBornM∗
1) + |M1|2 ,

dσ̃1 ∝ 2Re (MBornM̃∗
1) + |M̃1|2 ,

and

dσ2 ∝ 2Re
(
MBornM∗

2 +M1M̃∗
1 +M1M∗

2 + M̃1M∗
2

)

+|M2|2 .

Due to C-parity conservation the ratio σi/σBorn is a function of (Zα)2

only but not of Zα itself.
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The integration over the transferred momentum squared q21 and q22

results in two large Weizsäcker–Williams logarithms ∼ L2 for σBorn;

in one WW logarithm ∼ L for σ1 and σ̃1;

σ2 contains no WW logarithm. Therefore,

σ1

σBorn
∼ σ̃1

σBorn
∼ (Zα)2

L

and

σ2

σBorn
∼ (Zα)2

L2 < 0.4% .

As a result, with an accuracy of the order of 1% one can neglect

σ2 in the total cross section and to calculate

σCoul = σ1 + σ̃1
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in LLA only using EPA (see Ivanov, Schiller, Serbo. Phys. Lett. B 454

(1999) 155):

σCoul = −28

9π
[f(Z1α) + f(Z2α)]σ0 L2 ,

f(x) = x2
∞∑

n=1

1

n(n2 + x2)
.

It was also shown by ISS that the Coulomb corrections disappear

for large transverse momenta of the produced leptons,

at p±⊥ À m.

21



3. Unitarity corrections and σn

Due to Z1Z2α À 1 for γ À 1 it is possible to treat the nuclei as

sources of the external field and calculate the probability of

n-pair production Pn(ρ) in collision of two nuclei at a given impact

parameter ρ.

The cross section is then found as:

σn =
∫

Pn(ρ) d2ρ .

What we know about

Pn(ρ) ?
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It was realized many years ago that in the Born approximation

P1(ρ) ∼ (Zα)4L at ρ ∼ 1/m

and, therefore, this probability can be greater than 1

Baur. Phys. Rev. A 42 (1990) 5736.

It means that one should take into account the unitarity correc-

tions and that the cross section for multiple pair production should

be large enough.

The unitarity corrections come from the unitarity requirement

for the S-matrix.
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It was argued in papers
Baur. Phys. Rev. D 41, 3535 (1990); Roades-Brown and Wenes. Phys. Rev. A

44, 330 (1991); Best, Greiner, and Soff. Phys. Rev A 46, 261 (1992); Henken,

Trautman, and Baur. Phys. Rev. A 51, 998 (1995)

that the factorization of the multiple pair production probability is
valid with a good accuracy given by the Poisson distribution:

Pn(ρ) =
[n̄(ρ)]n

n!
e−n̄(ρ) ,

where n̄(ρ) is the average number of pairs.
Recently, it was proved in paper
Bartoš, Gevorkyan, Kuraev, Nikolaev. Phys. Lett. B 538 (2002) 45

by a direct summation of the Feynman diagram in LLA.

The unitarity requirement is fulfilled by the Poisson distribution,
whose sum over n gives one.
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The probability for producing one pair, given in perturbation theory

by n̄e, should be modified to read n̄e exp(−n̄e).

For the one-pair production it corresponds to replacement:

σe+e− =
∫

n̄e(ρ) d2ρ → σe+e− + σunit
e+e− =

∫
n̄e(ρ) e−n̄e(ρ) d2ρ , (1)

where

σunit
e+e− = −

∫
n̄e(ρ)

[
1− e−n̄e(ρ)

]
d2ρ

is the unitarity correction.

The main contribution to σe+e− comes from ρ À 1/m,

But, the main contribution to σunit
e+e− comes from ρ ∼ 1/m.
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The function n̄e(ρ) is a very important quantity for the

evaluation of unitarity corrections.

It was found for γ À 1 in closed form

(taken into account (Zα)n terms exactly) by

Baltz, McLerran. Phys. Rev. C 58 (1998) 1679;

Segev, Wells. Phys. Rev. A 57 (1998) 1849;

Baltz, Gelis, McLerran, Peshier. Nucl. Phys. A 695 (2001) 395 .

The problem of its proper regularization was solved by

Lee, Milstein. Phys. Rev. A 64 (2001) 032106.

But! The obtained close form for n̄e(ρ) is, in fact, nine-fold integral

and its calculation is very laborious.
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More simpler approximate expression for n̄e(ρ) is very welcome.

The functional form of this function reads

n̄e(ρ, γ, Z) = (Zα)4 F (x, Z) [L−G(x, Z)] , L = ln (γ2) , x = m ρ .

The simple analytical expressions for functions F (x, Z) and G(x, Z) is

obtained by Lee, Milstein, Serbo (2002) only at large values of the

impact parameters, ρ À 1/m.

On the other hand, for calculation of the unitarity corrections we need

F (x, Z) and G(x, Z) in the range ρ ∼ 1/m.

In the recent paper by Lee, Milstein nucl-th/0610008 it was given the

detailed consideration of the function F (x) including its tables and

the compact integral form — five-fold Integral.
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Fig. 5

As an example, in Fig. 5 it is shown the function F (x) from Lee,

Milstein paper, for Z1 = 92 (dash-dotted line) , Z1 = 79 (dotted line),

Z1 = 47 (dashed line), and the Born approximation (solid line).
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Using some numerical calculations for the function n̄e(ρ, γ, Z), we find

a simple approximation

G(x, Z) ≈ 1.5 ln(x + 1.4) + 1.9 .

As a result, the approximate expression

n̄e(ρ, γ, Z) = (Zα)4 F (x, Z) [L− 1.5 ln(x + 1.4)− 1.9] ,

L = ln (γ2) , x = m ρ

with the function F (x, Z) from paper of Lee, Milstein (2006) can be

used for calculation of unitarity corrections with an accuracy of the

order of 5 %.
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4. Motivation and main results for µ+µ−
pair

Motivation: muon pair production may be easier for an experi-

mental observation.

Technique: the calculation scheme for the µ+µ− pair production

is quite different from that for the e+e− pair production.

This process was recently considered in detail by

Hencken, Kuraev, Serbo. Phys. Rev. C 75 (2007) 034903;

Jetschura, Hencken, Serbo (in preparation).

It was found out that:
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1. The Coulomb corrections are small, while unitarity corrections
are large;

2. The exclusive cross section differs considerable from its Born
value, but it is difficult for the experimental observation;

3. The inclusive cross section coincides with the Born cross section.

5. Exclusive µ+µ− pair production

5.1. Born cross section for one µ+µ− pair production

Let us consider the production of one µ+µ− pair

Z1 + Z2 → Z1 + Z2 + µ+µ− ,
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using EPA, but taking into account nucleus electromagnetic form
factors.

The Born differential cross section dσB for the considered process
is related to the cross section σγγ for the real γγ → µ+µ− process
by the equation

dσB = dn1dn2 dσγγ ,

where dni is the number of equivalent photons.

As a result,

σB =
(Z1αZ2α)2

πµ2
J(γΛ/µ) ,

where the function J(γΛ/µ) is plotted in Fig. 6. An accuracy of this
calculation is of the order of 5 %.
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5.2. Probability PB(ρ)

Let us now consider the probability of muon pair production PB(ρ)

in the Born approximation. In the LLA:

PB(ρ) =
∫

dn1dn2 δ(ρ1 − ρ2 − ρ)σγγ =

=
28

9π2

(Z1αZ2α)2

(µρ)2
Φ(ρ) .
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There are two scales in dependence of function Φ(ρ) on ρ:

Φ(ρ) =

(
4 ln

γ

µρ
+ ln

ρ

R

)
ln

ρ

R
at R ¿ ρ ≤ γ/µ ,

Φ(ρ) =

(
ln

γ2

µ2ρR

)2

at γ/µ ≤ ρ ¿ γ2/(µ2R) .

We compare Eqs. for Φ(ρ) with the numerical calculations based on

the exact matrix element. There is a good agreement for the

Pb-Pb collisions: the discrepancy is less then 10 % at µρ > 10

and it is less then 15 % at µρ > 2µR = 7.55.
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5.3. Coulomb and unitarity corrections

The Coulomb correction corresponds to Feynman diagram of Fig.

7 with the multi-photon exchange.

Fig. 7
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Due to restriction of transverse momenta of additional exchange

photons on the level of 1/R (nuclear form factor!), the effective pa-

rameter of the perturbation series is not (Zα)2, but (Zα)2/((Rµ)2L).

Therefore, the real suppression parameter is of the order of

η2 =
(Zα)2

(Rµ)2L
, L = ln

(
γ2

)
,

which corresponds to the Coulomb correction less then 1%.
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The unitarity correction σunit to one muon pair production is de-
scribed by exchange of blocks, corresponding light-by-light scattering
via the virtual electron loop, between nuclei.

Fig. 8
As usual,

σB =
∫ ∞
2R

PB(ρ) d2ρ → σB + σunit =
∫ ∞
2R

PB(ρ) e−n̄e(ρ) d2ρ
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and

σunit = −
∫ ∞
2R

[
1− e−n̄e(ρ)

]
PB(ρ) d2ρ

is the unitarity correction for the exclusive production of one

muon pair. In LLA we find

δunit =
σunit

σB
= −49 % for the Pb-Pb collisions at LHC.

It is seen that unitarity corrections are large, in other words, the

exclusive production of one muon pair differs considerable from

its Born value.
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6. Inclusive production of one µ+µ− pair

The experimental study of the exclusive muon pair production seems

to be a very difficult task.

Indeed, this process requires that the muon pair should be regis-

tered without any electron-positron pair production including e±
emitted at very small angles.

Otherwise, the corresponding inclusive cross section will be

close to the Born cross section.
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To prove this we consider the production of one µ+µ− pair and n

electron-positron pairs in collision of two ultra-relativistic nuclei

Z1 + Z2 → Z1 + Z2 + µ+µ− + n (e+e−)

taking into account the unitarity corrections which corresponds to
the exchange of the blocks of light-by-light scattering via the virtual
electron loop.
The corresponding cross section

dσ1+n

can be calculated by a simple generalization of the Eqs. obtained in
paper of
Bartoš, Gevorkyan, Kuraev, Nikolaev. Phys. Lett. B 538 (2002) 45

for the process without muon pair production:

Z1 + Z2 → Z1 + Z2 + n (e+e−) .
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Our results is the following:

dσ1+n

d2ρ
= PB(ρ)

[n̄e(ρ)]n

n!
e−n̄e(ρ) ,

where n̄e(ρ) is the average number of the e+e− pairs.

It is clearly seen from this expression that after summing up over

all possible electron pairs we obtain the Born cross section

∞∑

n=0

σ1+n = σB .
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Therefore, there is a very definite prediction:

the inclusive muon pair production coincides

with the Born limit.

This direct consequence of calculations
taking into account strong field effects
may be more easier for an experimental test
that the prediction for cross sections of sev-
eral e+e− pair production.
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One more prediction

Let us discuss the relation of the obtained cross sections for the muon

pair production with the the differential cross section of the e+e−
pair production in the region of large transverse momenta of

e±, for example at p±⊥ & 100 MeV.

It is clear that for the e+e− pair production in this region, the situation

is similar to the considered case for µ+µ− pair production.

Therefore, we expect that
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the inclusive production of a single e+e− pair

with large transverse momenta of e±

(together with several unobserved e+e− pairs in the region of small

transverse momenta of e± of the order of me)

has small Coulomb and unitarity corrections and, therefore,

coincides with the Born limit.
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PART II

NUCLEAR BREMSSTAHLUNG

Based mainly on papers

I.F. Ginzburg, U.D. Jentschura, V.G. Serbo, Phys. Lett. B 658, 125

(2008);

I.F. Ginzburg, U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 54, 267

(2008);

U.D. Jentschura, K. Hencken, V.G. Serbo (in preparation)
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7. Ordinary nuclear bremsstrahlung

The ordinary nuclear bremsstrahlung without excitation of the
final nuclei is given by Feynman diagrams of Fig. 1

k
q
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Fig. 9

and was known in detail many years ago
Bertulany, Baur Phys. Rep. 163, 299 (1988)
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It can be described as the Compton scattering of the equivalent

photon off opposite nucleus:

dσbr = dσa
br + dσb

br ,

and

dσa
br = dn1 dσC(ω, Eγ, E2, Z2) .

Here, dn1 is the number of equivalent photons emitted by nucleus 1

and dσC(ω, Eγ, E2, Z2) is the differential cross section for the Compton

scattering off nucleus Z2.

We can rewrite these Eqs. as

dσa
br = dPa(ρ) d2ρ ,
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where the differential probability dPa(ρ) assumes the form

dPa(ρ) =
Z2

1α

π2

σT(Z2)

ρ2

(
1− xγ +

3

4
x2

γ

)
dEγ

Eγ
, xγ =

Eγ

E2

with the Thomson cross section (M is the mass of nucleus)

σT(Z2) =
8π

3

Z4
2α2

M2
.

The unitarity correction

δa
unit =

dσa
unit

dσa
br

,

reads

δa
unit = − 1

Lγ

∫ ∞
2R

dρ

ρ

[
1− e−n̄e(ρ)

]
, Lγ = ln

(
2γ1 γ2

2 (1− xγ)

R Eγ

)
.
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An evaluation of this integral gives the following result

for the photon energy Eγ = 1 GeV,

δunit = −19% for the RHIC , δunit = −15% for the LHC .
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8. Large contribution

of the virtual Delbrück scattering

into nuclear bremsstrahlung

Recently we consider emisson of photons not via the virtual Compton

subprocess, but via another one –

the virtual Delbrück scattering subprocess

— which gives an essential contribution to emission of photons at

the nuclear collisions without excitation of the final nuclei (Fig. 10).

51



q

k

P2

P1

P ′

2

P ′

1

(a)

q

k

P1

P2

P ′

1

P ′

2

(b)

Fig. 10

First note: Baur, Bertulany Z. f. Phys. A 330, 77 (1988)
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At first sight, this is a process of a very small cross section since

σ ∝ α7.

But at second sight, we should add a very large factor

Z6 ∼ 1011

and take into account that the cross section scale is

1/m2
e .

And the last, but not the least, we found that this cross section
has an additional logarithmic enhancement of the order of

L2 & 100 , L = ln
(
γ2

)
.

Thus, the estimate is

σ ∼ (Zα)6 α

m2
e

L2 .
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Our analytical result

σ = C
(Zα)6 α

m2
e

L2

with

C ≈ 0.4 .

This cross sections is considerably larger than that for ordinary nu-

clear bremsstrahlung in the considered photon energy range:

me ¿ Eγ ¿ me γ .
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Thus, the discussed cross section for Au-Au collisions at the RHIC

collider is

σ = 14 barn

and for Pb-Pb collisions at the LHC collider is

σ = 50 barn .

That is quite a serious number!

Note for comparison, that the last cross section is 6 times larger than

for the total hadronic/nuclear cross section in Pb–Pb collisions,

which is roughly 8 barn.
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