Dilepton reconstruction in Au+Au collisions at 1.23A GeV with HADES

PATRICK SELLHEIM FOR THE HADES COLLABORATION

Helmholtz Graduate School for Hadron and Ion Research

Introduction HADES Backtracking e⁺/e⁻ identification Dilepton reconstruction

Motivation

J. Cleymans et al., Phys. Rev. C 60 (1999) 054908

J. Stachel, arXiv:1311.4662

arXiv:1512.08688 [nucl-th] Fairness 2016 - Patrick Sellheim - 18/02/2016

Dilepton invariant mass spectrum

$\tau = 10^{-23} \text{ s}$

 Dilepton spectra represent the space-time integral of EM radiation

3

 Mass dependence allows separation of collision stages

Drell-Yan: NN $\rightarrow l^+l^-X$ Heavy-flavor: $c\overline{c} \rightarrow l^+l^-$ Medium radiation:

- QGP: $q\bar{q} \rightarrow l^+l^-$
- In-medium radiation ρ , $\omega \rightarrow l^+l^-$
- "4p annihilation": $\pi a_1 \rightarrow l^+ l^-$

Final state decays (hadron cocktail): π^0 , η , ω , φ

Fairness 2016 - Patrick Sellheim - 18/02/2016

Medium modifications of hadrons

Modification of the p meson spectral function in hot and dense matter.

Measurements of excitation functions

4.5

3.5

3

Intermediate mass range $1.1 < M_{e+e} < 3.0 \text{ GeV/c}^2$

Low mass range $0 < M_{e+e-} < 1.1 \text{ GeV/c}^2$

60.8

data

77.2

model expectation at BES-II

BES-II extrapolation

52.8 57.6

5

 $dN/dy|_{\pi}$

105

The average collision temperature T_s can be extracted by experiments

R. Rapp and H. Van Hees Phys.Lett. B753 (2016) 586-590 LMR Excess Yield / dN/dy $|_{\pi}~(imes~10^{-5})$ 2.5 2 1.5 LMR: 0.30 < Mee < 0.70 GeV/c² 0.5 200 GeV: PRI 113 02230 BES: STAR Preliminary 0 10 20 40 7 60 100 200 √s_{NN} (GeV) HADES measurement extends scan to lower energies:

 $\sqrt{s_{NN}} = 2.42 \ GeV$

P. Huck et al. (STAR collaboration), NPA 931 (2014)

Fairness 2016 - Patrick Sellheim - 18/02/2016

HADES measurements

- A strong broadening of in medium states is observed in elementary, p+A and medium sized A+A collisions.
- Excess yield scales with system size like Apart^{1.4}
- How does the excess evolve with system size? → Au+Au collisions!

HADES, PLB 715 (2012) 304-309

Introduction HADES Backtracking e⁺/e⁻ identification Dilepton reconstruction

HADES experiment

Measurements at SIS18

Fixed target experiment

Fast detector

10-50 kHz trigger rate

Large acceptance

18° < θ < 85° (polar angle) Full azimuthal angle

Tracking system

4 drift chamber planes + superconducting magnet

Time-of-flight detectors RPC + TOF for precise hadron identification

HADES experiment

Excellent mass resolution

15 MeV/c² in the vector meson region

γ , γ^* are rare probes

Dilepton production is suppressed by factor α^2 : Corresponds to **branching** ratio $\cong 10^{-5}$

At SIS18 energy range vector mesons are produced subthreshold

Ring Imaging Cherenkov detector (RICH) and PreShower: Lepton identification

RICH ring finder

Side view

Photon detector response

11

Introduction HADES Backtracking e⁺/e⁻ identification Dilepton reconstruction

Concept

Track preselection

Selection of **good lepton candidates** based on particle velocity and specific energy loss

Determination of expected ring centers

Based on angular information provided by reconstructed particle tracks

Motivation

- Exclude multiple scattering in mirror from matching quality
- Allow overlapping rings
- Identify true close pairs

Implementation

Ring identification

Backtracking observables

Single Leptons

- Maxima number = Photons
- Cluster charge and pads
- Maximum position based ring quality

Close Pairs

 Maxima shared with overlapping ring

Fired RICH pad

Maximum position

Lepton 1

Fairness 2016 - Patrick Sellheim - 18/02/2016

Introduction HADES Backtracking e⁺/e⁻ identification Dilepton reconstruction

e⁺/e⁻ identification

Data sample

- 47% most central Au+Au collisions recorded
- 5.85 x 10⁹ events

Lepton identification

- RICH ring / Backtracking
- Particle velocity
- Specific energy loss
- Electromagnetic shower
- Track quality

Multivariate analysis

Particle identification via a neural network

- I. Training
 - Input of measured observables
 - Fully based on simulation
- II. Evaluation of response value during analysis.

III. Response value threshold

 Tuned for high Sig/Bg and significance of

Lepton identification results

Fairness 2016 - Patrick Sellheim - 18/02/2016

Introduction HADES Backtracking e⁺/e⁻ identification Dilepton reconstruction

Lepton pairing

Signal estimation

- 1. Pair combination
 - Combination of all pairs
- 2. Background estimation
 - Two background types
- 3. Background subtraction

Background types

21

Correlated background Uncorrelated background

Background estimation

Same event like-sign-

- Geometrical mean: $2\sqrt{N_{++}N_{--}}$
- Consideration of correlated background
- Normalization included

Mixed event unlike-sign

- Combinations of leptons from different events
- High statistics

Invariant mass spectra RAW

Signal = N_{e+e-} - CB

BG Rejection cuts:

P > 0.1 GeV/c

■ α_{e+e-} > 9°

Normalized to the number of produced π^0

Corrected spectrum

Only statistical errors included

Excess yield

Excess yield

 Spectra corrected for efficiency NOT for acceptance

25

 Almost exponential spectrum up to 1 GeV/c²

- High efficient e⁺/e⁻ reconstruction with backtracking
- Dielectron spectrum reconstructed up to 1 GeV/c²

 Further measurements at SIS18 and at higher energies with SIS100

The HADES collaboration

Backup

Fairness 2016 - Patrick Sellheim - 18/02/2016

EM probes in heavy ion collisions

γ, γ* do not interact strongly

Can be used to extract primary information of the hot and dense phase

γ , γ^* are produced in all collision stages

Contributions from all stages have to be identified precisely

γ , γ^* probe EM structure of strongly interacting matter

Invariant mass monitors directly spectral function

Overvie experiments

Implementation

31

Transformation from track angles to pad plane coordinates

Position depended parameterization of rings

Information extraction out of measured signals

Ring quality

- 2D Gaussian function
- Single photon cluster fit to determine σ_x, σ_y
- x,y position has to be inside maximum pad

$$\chi_{Bt}^{2} = \frac{\sqrt{\sum^{n} \frac{\sqrt{\Delta x^{2} + \Delta y^{2}}}{\sqrt{\sigma_{Geom}^{2} + \sigma_{Err}^{2}}}}}{n}$$

 $d = \sqrt{\Delta x^2 + \Delta y^2}$ n = Number of maxima $\sigma_{Err} = \frac{1}{2}Pad$ $\sigma_{Geom} = Photon distribution width$

Fairness 2016 - Patrick Sellheim - 18/02/2016

Single lepton identification

Ring finder vs backtracking

Results: Momentum vs β

Background estimation

Same event like-sign

- Geometrical mean: $2\sqrt{N_{++}N_{--}}$
- Consideration of correlated background
- Normalization included

Mixed event unlike-sign

- Combinations of leptons from different events
- High statistics

Efficiency correction

Single lepton efficiency

- Based on simulation
- Separate matrix for e⁺ and e⁻

440 MeV < p < 450 MeV

