$B B$ and $B \bar{B}$ four-quark systems from lattice QCD

Antje Peters

peters@th.physik.uni-frankfurt.de
Goethe-Universität Frankfurt am Main, Germany
in collaboration with Pedro Bicudo, Krzysztof Cichy and Marc Wagner
arXiv:1505.00613 arXiv:1510.03441

Study of tetraquark states

Motivation

- A number of mesons found in particle detectors (LHCb, Belle) are not well understood.
- E.g. charged charmonium and bottomonium states $\left(Z_{c}{ }^{ \pm}\right.$and $\left.Z_{b}{ }^{ \pm}\right)$
- They include bottomonium $b \bar{b}$ or charmonium $c \bar{c}$, but are also charged: must be 4-quark states

Approach

- Computation of 4-quark state very difficult
- If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom independently in two steps (Born-Oppenheimer approximation)

1 Lattice computation of the potential of two static quarks in the presence of two light quarks

2 Solve Schrödinger's equation to check whether potentials are sufficiently attractive to form a bound state.

Lattice QCD

- QCD: Theory to describe quarks and gluons and the forces between them
- No analytical solution for low energy observables
- No pertubative approach on the potential \rightsquigarrow numerical solution (Lattice QCD)

[http://www.jicfus.jp/en/promotion/pr/mj/guido-cossu/, April 28, 2015]

Hadron spectroscopy I

- A hadron is completely described by its isospin (flavor content), total angular momentum J, parity P and charge conjugation C.
- Application of a suitable operator $\mathcal{O}(t)$ on the vacuum generates field excitations which are similar to the hadron of interest.
- Here: Use two static quarks and two quarks of finite mass
- Static quarks: no spin, no contribution to total angular momentum and isospin
- $B B: \bar{Q} \bar{Q} q q$ and $B \bar{B}: Q \bar{Q} q \bar{q}$ with $Q=b$ and $q \in\{u, d, s, c\}$
- e.g. $B \bar{B}$ four-quark operator

$$
\mathcal{O}_{B \bar{B}}(t)=\Gamma_{A B} \tilde{\Gamma}_{C D} \underbrace{\bar{Q}_{C}^{a}(\vec{x}, t) u_{A}^{a}(\vec{x}, t)}_{B \text { meson at } \vec{x}} \underbrace{\bar{d}_{B}^{b}(\vec{y}, t) Q_{D}^{b}(\vec{y}, t)}_{\bar{B} \text { meson at } \vec{y}}
$$

- Obtain the correlation function in time for each separation r of the static quarks via

$$
C(t, r)=\langle\Omega| \mathcal{O}^{\dagger}(t) \mathcal{O}(0)|\Omega\rangle
$$

Requires \mathcal{O} (months) of computing time on high performance computers.

Hadron spectroscopy II

- For large t one finds the potential $V(r)$ of the hadronic state $\mathcal{O}(t)$:

$$
\lim _{t \rightarrow \infty}\langle\Omega| \mathcal{O}^{\dagger}(t) \mathcal{O}(0)|\Omega\rangle \propto \exp (-V(r) t)
$$

- Get a value of the potential for each quark separation r and obtain the complete potential:

$$
\mathrm{r}=1 \mathrm{a}
$$

$r=2 a$

and so on...

$$
\mathrm{r}=2 \mathrm{a}
$$

$B B$ systems

The $B B$ system - Expectations

small separations of the static antiquarks:

- interaction due to 1-gluon exchange
- bound state: static $\bar{Q} \bar{Q}$ pair in a color triplet (attractive) \longrightarrow antidiquark

large separations of the static

 antiquarks:- screening of the antiquark-antiquark interaction due to light quarks (stronger, the more massive the light quarks)
- basically 2 static-light mesons

Fit an ansatz to the potentials:

Observation: Potentials show more promise for binding the less massive the light quarks are! Strongest attraction for scalar isosinglet $q q=\frac{u d-d u}{\sqrt{2}}$.

Solve Schrödinger's equation

- notice: Born-Oppenheimer approximation is valid for $m_{q} \ll m_{Q}$
- solve Schrödinger's equation:

$$
\left(-\frac{1}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V(r)\right) R(r)=E_{B} R(r) \quad, \quad \psi(r)=R(r) / r
$$

- lowest eigenvalue $E_{B}<0$ binding (4-quark bound state), $E_{B}>0$ no binding (2 mesons)

Most promising channel for a bound state: scalar $u d \bar{b} \bar{b}$

Extrapolation to the physical quark mass: Binding increases

Summary $B B$

- $B B$ systems are experimentally hard to observe, but theoretically easier to investigate
- Here: $B B$ with light quarks $q q=u d$ with quantum numbers $I\left(J^{P}\right)=0\left(1^{+}\right)$ (attractive channel)
- We find $E_{B}=-90_{-36}^{+43} \longrightarrow$ binding with more than 2σ confidence level
- $q q=s s, c c$: no binding

$B \bar{B}$ systems

The $B \bar{B}$ system - Expectations

- For the experimentally most interesting case of isospin $\left|I_{z}\right|=1, B \bar{B}$ has the same quantum numbers as $Q \bar{Q}$ and π.
- So there are several states to be taken into account:
- four-quark state
- 2 mesons
- $Q \bar{Q}+\pi$

Consequently, one wonders...

- Is the potential contaminated by $Q \bar{Q}+\pi$?
- How to find a four-quark signal that is precise enough to be distinguishable from $Q \bar{Q}+\pi$?
- How to exclude "inadvertent" and unnecessary expensive computation of the $Q \bar{Q}+\pi$ instead of four-quark state?

Solution:

Build a 2×2-matrix $C(t)$

- $C_{00}(t)=\left\langle\mathcal{O}_{B \bar{B}}^{\dagger}(t) \mathcal{O}_{B \bar{B}}(0)\right\rangle$
- $C_{01}(t)=\left\langle\mathcal{O}_{B \bar{B}}^{\dagger}(t) \mathcal{O}_{Q \bar{Q}+\pi}(0)\right\rangle$
- $C_{10}(t)=\left\langle\mathcal{O}_{Q \bar{Q}+\pi}^{\dagger}(t) \mathcal{O}_{B \bar{B}}(0)\right\rangle$
- $C_{11}(t)=\left\langle\mathcal{O}_{Q \bar{Q}+\pi}^{\dagger}(t) \mathcal{O}_{Q \bar{Q}+\pi}(0)\right\rangle$ and extract the first excited state with the Generalized Eigenvalue Problem (GEP).

The matrix $C(t)$

- Derive different elements $C_{i j}(t)$ of the matrix analytically.
- Implement them.
- Identify the symmetries of $C_{i j}(t)$ (time-reversal, parity, charge conjugation, hermiticity and cubic rotations).
- Average according to the symmetries to increase statistics.

Preliminary results I

Potentials obtained

- the $Q \bar{Q}$ potential for comparison
- $Q \bar{Q}+\pi$: ground state
- $B \bar{B}$: includes contributions of $Q \bar{Q}+\pi$
- first excited state of the 2×2 matrix: free of contributions of $Q \bar{Q}+\pi$

Preliminary results II

Binding energy

A very preliminary analysis yields for quantum numbers $I\left(J^{P}\right)=1\left(1^{+}\right)$:

$$
E_{B}=(-170 \pm 100) \mathrm{MeV}
$$

Summary $B \bar{B}$ system

- $B \bar{B}$ is experimentally more easy to investigate than $B B$.
- $B \bar{B}$ with light quarks $q q=u \bar{d}$ with quantum numbers $I\left(J^{P}\right)=1\left(1^{+}\right)$is a tetraquark candidate.
- Work in progress

Summary $B B$ and $B \bar{B}$ systems

- $B B$ systems with light quarks are able to form a bound state.
- $B \bar{B}$ systems are experimentally more easy to access than $B B$ systems, but theoretically more challenging.
- Candidate for a binding $B \bar{B}$ state is currently investigated.

