Reconstructing Hyperons with the PANDA Detector at FAIR

Walter Ikegami Andersson

 $\label{eq:uppsala} \begin{array}{l} \text{Uppsala University} \\ \text{on behalf of the } \overline{P}ANDA \mbox{ collaboration} \end{array}$

FAIRNESS February 14-19, 2016 Garmisch-Partenkirchen, Germany

Motivation

What is special about strangeness production?

- Light quark (u, d) production
 - Highly non-perturbative
 - Hadrons as relevant degrees of freedom
- Strangeness production
 - Scale: $m_s pprox 100 {
 m MeV} \sim \Lambda_{
 m QCD} pprox 200 {
 m MeV}$
 - Relevant degrees of freedom unclear
- Heavier quark (c, b) production
 - Quarks and gluons relevant
 - Perturbative QCD applicable

Hyperon production $\overline{p}p \rightarrow \overline{Y}Y$

Models based on the quark-gluon picture¹ and on the hadron picture².

Figure: $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ in quark-gluon picture (left) and in Hadron picture (right).

Different models give different predictions of e.g.

- angular distributions
- the correlation of the spin of the antihyperon-hyperon

¹PLB 179 (1986); PLB 165 (1985) 187; NPA 468 (1985) 669

²PRC 31 (1985) 1857; PLB 179 (1986); PLB 214 (1988) 317

Spin observables can be used to test theoretical models

Polarisation in $\overline{p}p \to \overline{Y}Y$

- 3 polarisations for spin- $\frac{1}{2}$ hyperons: P_x, P_y, P_z
- $P_x = P_z = 0$ due to strong production
- $P_y = P_{\overline{y}}$ due to rotational invariance

The $\Lambda ightarrow p\pi^-$ decay

- Ground state hyperons decay via the weak interaction
- Parity violating decay → asymmetry in angular distributions

$$I(\theta_p) = \frac{1}{4\pi} (1 + \alpha P_y \cos \theta_p)$$

 $\alpha = {\rm 0.64}$ - decay asymmetry parameter

Hyperons: Existing data on $\overline{p}p \rightarrow \overline{Y}Y$

Figure: Cross section of $\overline{p}p \rightarrow \overline{Y}Y$ reactions

- Most data on $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ from PS185 @ LEAR
- Few data on multistrange production
- Only bubble chamber measurement of $(\overline{\Xi}\Xi)$
- No data on $\overline{\Omega}\Omega$ or $\overline{\Lambda}_c\Lambda_c$

Hyperons: Existing data on $\overline{p}p \rightarrow \overline{Y}Y$

Figure: Polarisation P_y prediction from quark-gluon (dotted) and hadron exchange picture (solid and dashed)

Neither models describe the data perfectly³

³Figure from Phys. Rep. 368 (2002) 119.

PANDA - antiProton ANnihilation at DArmstadt

- Target- and forward spectrometer provide a near 4π coverage
- \overline{p} beam momentum of 1.5 15 GeV/c
- Unpolarized beam and target
- High resolution measurement and PID
- HESR day-1 luminosity $\mathcal{L} \sim 10^{31} \text{cm}^{-2} \text{s}^{-1}$

Accessible hyperons at $\overline{P}ANDA$

Efficiencies simulated using a simplified MC framework⁴⁵

- Cross section of $\overline{p}p \to \overline{\Lambda}\Lambda, \overline{\Lambda}\Sigma^0$ known near threshold
- Only theoretical prediction of $\overline{\Omega}\Omega$ and $\overline{\Lambda}_c\Lambda_c$ cross sections

Momentum	Reaction	σ Efficiency		Rate	
(GeV/c)		(µb)	(%)	at $10^{31} {\rm cm}^{-2} {\rm s}^{-1}$	
1.64	$\overline{p}p ightarrow \overline{\Lambda}\Lambda$	64	11	$29s^{-1}$	
4	$\overline{p} p ightarrow \overline{\Lambda} \Sigma^0$	\sim 40	31	$30s^{-1}$	
4	$\overline{p}p ightarrow \overline{\Xi}^+ \Xi^-$	≈ 2	pprox 20	$1.5 { m s}^{-1}$	
12	$\overline{p}p ightarrow\overline{\Omega}^{+}\Omega^{-}$	pprox 0.002	pprox 30	$pprox$ 4 ${ m h}^{-1}$	
12	$\overline{p}p ightarrow \overline{\Lambda}_c^- \Lambda_c^+$	pprox 0.1	pprox 35	$pprox$ 2day $^{-1}$	

⁴Sophie Grape, Ph. D. Thesis, Uppsala University 2009
 ⁵Erik Thomé, Ph. D. Thesis, Uppsala University 2012

PANDA target spectrometer

Detect particles with $\theta \geq 10^\circ$, $0 \leq \phi < 360^\circ$

Charged track reconstruction

- Micro Vertex Detector (MVD)
- Straw Tube Tracker (STT)
- Gas Electron Multiplier (GEM)

PANDA target spectrometer tracking scheme

- Clusterization
 - Bunch correlated hits
 - Extrapolate to different detectors
- Initial guess of trajectory
 - No energy loss
 - Solenoid \vec{B} -field in beam direction
 - \rightarrow Helix trajectory.
- Kalman filter
 - Inhomogeneity in \vec{B} -field
 - Energy loss
 - Detector material
 - \rightarrow Realistic trajectory.

PANDA target spectrometer tracking scheme

- Different requirements:
 - Detectors/detector groups
 - Topologies
 - Online/offline
- Dedicated pattern recognition and tracking algorithms for PANDA under development

Hyperon decay characteristics

- ! Ground state hyperons decay weakly \rightarrow displaced vertices
- ! Many hyperons decay to Λ
- $\overline{p}p \rightarrow \overline{\Omega}\Omega$: In $\sim 30\%$ of events, ≥ 1 tracks only leave hits in STT

The PANDA Straw Tube Tracker

STT specifications				
Total straws	4636			
Axial layers	15-19			
Stereo layers	8			
Stereo angle	\pm 2.9 deg			

Isochrone radius

Radial distance from track to wire

Figure: Cross sectional view of STT Green - parallel straw Red, blue - skewed straw

Tracking algorithm dedicated for STT

Track reconstruction algorithm using only STT. (J. Schumann, Forschungszentrum Jülich)

- Cluster hits in parallel straws into tracklets (neighboring relations)
- Refined circle fit using isochrones
- Assign skewed straw hits to track

Output: circle for each track in *xy*-plane

Must include skewed straws to reconstruct p_z

Longitudinal position from skewed straws

Longitudinal position from skewed straws

Longitudinal position from skewed straws

The method:

- Extract isochrone radius in skewed straw
- Center of isochrone gives z-position
- Generate all possible isochrone positions
- Calculate (z, ϕ)

Ambiguity: Each straw gives two possible (z, ϕ)

Solve ambiguity

Use Hough transform or combinatoric method to reject fake positions

Find geometric shapes in images.

- Helix trajectory \rightarrow straight line in $z \phi$ space
- Line parameters in *xy*-plane, slope *k* and intercept *m*

$$- y(x) = kx + m$$

Problem: The intercept parameter *m* unbound.

Hesse normal form

$$r = x \cos \theta + y \sin \theta$$
$$y = \left(-\frac{\cos \theta}{\sin \theta}\right) x + \left(\frac{r}{\sin \theta}\right)$$

Figure: Blue line perpendicular to red line and crosses the origin

The method:

 $I sochrone centers in z - \phi$ space

- Isochrone centers in $z \phi$ space
- ② Generate set of all lines

- Isochrone centers in $z \phi$ space
- ② Generate set of all lines
- Series → accumulator space

- $I sochrone centers in z \phi$ space
- ② Generate set of all lines
- Ø Repeat for all points

- Isochrone centers in $z \phi$ space
- 2 Generate set of all lines
- Ø Repeat for all points

The method:

- Isochrone centers in $z \phi$ space
- Ø Generate set of all lines
- Observation of the second second
- Repeat for all points
- Voting procedure \rightarrow true line

True line found in maximum!

Method 1: Hough transform - our track

Figure: 360 lines generated for each data point in steps of 1° in θ

Method 1: Extracting helix angle

The method:

- **1** Calculate point of closest approach (POCA) from hits to true line
- 2 Accept hit with smallest POCA
- **③** Straight line fit with selected (z, ϕ) coordinates

Finish

The slope of the fitted line yields the helix angle. z_0 and p_z can now be extracted!

Skewed hits position in $Z-\phi$

Skewed hits position in Z-

The method:

 Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines

Skewed hits position in Z-

The method:

- Calculate all lines between
 (z, \u03c6) points in neighboring skewed straws
- Calculate angle between all possible neighboring lines
- Ignore paths where $\theta < 160^\circ$ → reduces number of combinations
- Choose path with $\min(\sum \theta_i 180^\circ)$

Hits in final path chosen as true hits

Summary and outlook

- $\overline{p}p \rightarrow \overline{Y}Y$ production probes QCD in the intermediate domain
- PANDA is the ideal experiment for measurement of antihyperon-hyperon channels
- Hyperons pose a challenge due to displaced vertices
- Tracking algorithms dedicated to STT will be extended to reconstruct *p_z* with skewed straws

Thank you for your attention!

Code structure

Algorithm implemented in a PndTask. Input branches:

- PndTrack Standard PANDA track object
- PndTrackCand PndSttHits belonging to track
- PndRiemannTrack Riemann circle parameters to track

Functions:

- MoveSkewedHitstoCircle
 - Calculates all possible (z, ϕ) in skewed straw
- HoughTruelsoFinder
 - Fills accumulator space, find maximum, rejects fake hits with POCA
- LineCombilsoFinder
 - Generates lines, calculates angles, find best path
- PzLineFitExtract
 - Simple line fit to true (z, ϕ) hits and extracts helix angle

Hyperon channels in $\overline{P}ANDA$

Why antihyperon-hyperon production?

- Hyperons produced at scales where QCD is poorly understood
- *CP* violation needed to describe matter in the universe
- Never-before measured hyperon states
- Measure properties *e.g.* spin of hyperons

Figure: $\Lambda\overline{\Lambda}$ production channel, scarce data above $\sqrt{s} = 4$ GeV

Figure: $\overline{\Omega}^+ \Omega^-$ production channel, never measured 22/22 Hyperon production $\overline{p}p \rightarrow \overline{Y}Y$

Figure: $\overline{p}p \rightarrow \overline{Y}Y$ in quark-gluon picture (left) and in Hadron picture (right).

Spin observables can be used to test theoretical model. Angular distribution related to

$$I \propto \sum_{\mu,\nu=0}^{3} \sum_{k,l=0}^{3} \overline{\alpha} \alpha \chi_{kl\mu\nu} P_{k}^{B} P_{l}^{T} \overline{k}_{\mu} k_{\nu}$$

With unpolarised beam and unpolarised target, differential cross section χ_{0000} , polarisation $\chi_{00\mu0} = P_{\overline{i}}$, $\chi_{000\nu} = P_i$ and the spin correlations $\chi_{00\mu\nu} = C_{ij}$ are accessible.

Polarisation

- 3 polarisation parameters for spin-¹/₂ hyperons: P_x, P_y, P_z
- $P_x = P_z = 0$ due to strong production
- $P_y = P_{\overline{y}}$ due to rotational invariance

Spin correlation

- 9 spin correlation parameters for spin-¹/₂ hyperons: C_{i,j}
- $C_{xy} = C_{yx} = C_{yz} = C_{zy} = 0$ due to strong production
- $C_{xz} = C_{zx}$ due to rotational invariance

Polarised Particle	None	Beam	Target	Both
None	<i>I</i> 0000	A _{i000}	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	$K_{i00\nu}$	$D_{0j0\nu}$	$N_{ij0\nu}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{C_{ij\mu\nu}}$

• In $\overline{p}p \to \overline{Y}Y$ there are 256 spin variables in total

Polarisation

Proton angular distribution:

$$I(\theta_p) = \frac{1}{4\pi} (1 + \alpha P_Y \cos \theta_p)$$

 $\overline{\alpha}, \alpha$ - decay asymmetry parameter

Spin correlation

Nucleon angular distribution:

$$I(heta_i, heta_j) = rac{1}{16\pi^2}(1+$$

$$\overline{\alpha}\alpha\sum_{i,j}\mathbf{C}_{ij}\cos\theta_i\cos\theta_j)$$

Accessible hyperons at $\overline{P}ANDA$

