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Motivation

What is special about strangeness production?
@ Light quark (u, d) production

- Highly non-perturbative
- Hadrons as relevant degrees of freedom

@ Strangeness production

- Scale: ms =~ 100MeV ~ Aqcp =~ 200MeV
- Relevant degrees of freedom unclear

@ Heavier quark (c, b) production

- Quarks and gluons relevant
- Perturbative QCD applicable
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Hyperon production pp — Y'Y

Models based on the quark-gluon picture! and on the hadron picture.
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Figure: pp — AA in quark-gluon picture (left) and in Hadron picture
(right).

Different models give different predictions of e.g.
- angular distributions

- the correlation of the spin of the antihyperon-hyperon

1pLB 179 (1986); PLB 165 (1985) 187; NPA 468 (1985) 669
PRC 31 (1985) 1857; PLB 179 (1986); PLB 214 (1988) 317
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Hyperons: Spin observables in pp — Y'Y

Spin observables can be used to test theoretical models

Polarisation in pp — Y'Y

@ 3 polarisations for spin—% hyperons: Py, P,, P,
@ P, = P, = 0 due to strong production

@ P, = Py due to rotational invariance

4/22



Hyperons: Spin observables in pp — Y'Y

The A — pr~ decay

@ Ground state hyperons decay
via the weak interaction

@ Parity violating decay —
asymmetry in angular
distributions

1 !
1(6,) = E(l + aPy cos b)) y
o = 0.64 - decay asymmetry 7T_'I
'S
parameter
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Hyperons: Existing data on pp — Y'Y
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Figure: Cross section of pp — Y'Y reactions
@ Most data on pp — AA from PS185 @ LEAR
@ Few data on multistrange production
@ Only bubble chamber measurement of (==
@ No data on QQ or A A
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Hyperons: Existing data on pp — Y'Y

104 p_ = 1645.0 MeV/c i

TTr—r—r—T

Figure: Polarisation P, prediction from quark-gluon (dotted) and hadron
exchange picture (solid and dashed)

Neither models describe the data perfectly3

3Figure from Phys. Rep. 368 (2002) 119.
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PANDA - antiProton ANnihilation at DArmstadt

@ Target- and forward
spectrometer provide a near 4w
coverage

@ p beam momentum of 1.5 - 15
GeV/c

@ Unpolarized beam and target

@ High resolution measurement
and PID

@ HESR day-1 luminosity
L~ 103%cm—2s7!
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Efficiencies simulated using a simplified MC framework*®

Accessible hyperons at PANDA

@ Cross section of pp — AA, AX® known near threshold

@ Only theoretical prediction of QQ and Ac.A. cross sections

Momentum | Reaction o | Efficiency Rate
(GeV/c) (1b) (%) | at10%em—2s—1
1.64 pp — AA 64 11 2051

4 pp — NX° ~ 40 31 30s~!

4 Pp — _+_— ~ 2 ~ 20 1551

12 Bp—Q Q| ~0.002 ~ 30 ~ 4h71

12 pp— N NS ~0.1 ~35| =~2day”!

*Sophie Grape, Ph. D. Thesis, Uppsala University 2009
®Erik Thomé, Ph. D. Thesis, Uppsala University 2012




PANDA target spectrometer

Detect particles with 8 > 10°,
0 < ¢ < 360°

Charged track
reconstruction

@ Micro Vertex Detector
(MVD)

@ Straw Tube Tracker
(STT)

@ Gas Electron Multiplier - st

(GEM) H SciTil; DIRC

Interaction Point

Muon System
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PANDA target spectrometer tracking scheme

@ Clusterization

- Bunch correlated hits
- Extrapolate to different detectors

@ Initial guess of trajectory

- No energy loss
- Solenoid B-field in beam direction

— Helix trajectory.
@ Kalman filter

- Inhomogeneity in B-field
- Energy loss
- Detector material

— Realistic trajectory.
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PANDA target spectrometer tracking scheme

@ Different requirements:

- Detectors/detector groups
- Topologies
- Online/offline

@ Dedicated pattern recognition
and tracking algorithms for
PANDA under development

Hyperon decay characteristics

I Ground state hyperons decay weakly — displaced vertices

I' Many hyperons decay to A

°® pp — QQ: In ~ 30% of events, > 1 tracks only leave hits in STT
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The PANDA Straw Tube Tracker

STT specifications
Total straws 4636
Axial layers 15-19
Stereo layers 8
Stereo angle + 2.9 deg

Isochrone radius

Radial distance from track to wire

Figure: Cross sectional view of STT
Green - parallel straw
Red, blue - skewed straw
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Tracking algorithm dedicated for STT

Track reconstruction algorithm using only STT.
(J. Schumann, Forschungszentrum Jiilich)

© Cluster hits in parallel straws
into tracklets
(neighboring relations)

@ Refined circle fit using
isochrones

© Assign skewed straw hits to
track

Output: circle for each track in
xy-plane

Must include skewed straws to
reconstruct p,
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Longitudinal position from skewed straws

Pp — AN generated at
; Pbeam = 1.64 GeV/c
Final state: prtpn—
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Longitudinal position from skewed straws

Pp — AN generated at
Pbeam = 1.64 GeV/c
Final state: prtpn—

(Focus on this track!)
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Longitudinal position from skewed straws

The method:

@ Extract isochrone radius in
skewed straw

@ Center of isochrone gives
z—position

© Generate all possible isochrone
positions

Q Calculate (z, ¢)

Ambiguity: Each straw gives two
possible (z, ¢)

Solve ambiguity

Use Hough transform or
combinatoric method to reject fake
positions
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Method 1: Hough transform

Find geometric shapes in images.

@ Helix trajectory — straight line
in z — ¢ space

@ Line parameters in xy-plane,
slope k and intercept m

- y(x)=kx+m

Problem: The intercept parameter
m unbound.

Hesse normal form

r = xcosf + ysinf

r=(-5g)** (ara)

X

Figure: Blue line perpendicular to
red line and crosses the origin
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Method 1: Hough transform

Skewed hits position in Z-¢
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Method 1: Hough transform

Skewed hits position in Z-¢
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Method 1: Hough transform

Skewed hits position in Z-¢
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Method 1: Hough transform

Skewed hits position in Z-¢
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Method 1: Hough transform

Skewed hits position in Z-
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Method 1: Hough transform

The method:

o

©06 o000

Isochrone centers in z — ¢
space

Generate set of all lines

Parameters — accumulator
space

Repeat for all points

Voting procedure — true line

True line found in maximum!

Skewed hits position in Z-
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Method 1: Hough transform - our track

Skewed hits position in Z-¢
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Figure: 360 lines generated for each data point in steps of 1° in 6
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Method 1: Extracting helix angle

The method:
@ Calculate point of closest approach (POCA) from hits to true line
@ Accept hit with smallest POCA

© Straight line fit with selected (z, ¢) coordinates

The slope of the fitted line yields the helix angle. zy and p, can now be
extracted!
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Method 2:

The method:

Combinatorics

Skewed hits position in Z-¢
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Method 2: Combinatorics

Skewed hits position in Z-¢

o
The method: S@f
= !
@ Calculate all lines between F
(z, ¢) points in neighboring o
skewed straws F
165;
160—

1557\\\‘\\\\‘\H\‘HH‘HH‘HH‘HH‘\H\‘\H\‘\

45 50 55 60 65 70 75 80 85
Z/cm

21/22



Method 2: Combinatorics

Skewed hits position in Z-¢

o
The method: S@f
@ Calculate all lines between !
(z, ¢) points in neighboring o
skewed straws -

74°

@ Calculate angle between all

possible neighboring lines 1o
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Method 2: Combinatorics

Skewed hits position in Z-¢

o
The method: S@f
@ Calculate all lines between !
(z, ¢) points in neighboring o
skewed straws -

74°

@ Calculate angle between all

possible neighboring lines 1o
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Method 2: Combinatorics

The method:

@ Calculate all lines between
(z, ¢) points in neighboring
skewed straws

@ Calculate angle between all
possible neighboring lines

Skewed hits position in Z-¢
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Method 2: Combinatorics

The method:

@ Calculate all lines between
(z, ¢) points in neighboring
skewed straws

@ Calculate angle between all
possible neighboring lines

© Ignore paths where 6 < 160°
— reduces number of
combinations

Skewed hits position in Z-¢
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Method 2: Combinatorics

Skewed hits position in Z-¢

o
1

The method:
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Method 2: Combinatorics

The method:

@ Calculate all lines between
(z, ¢) points in neighboring
skewed straws

@ Calculate angle between all
possible neighboring lines

© Ignore paths where 6 < 160°
— reduces number of
combinations

@ Choose path with
min(>_ 6; — 180°)

Hits in final path chosen as true hitsJ

Skewed hits position in Z-¢
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Summary and outlook

@ pp — Y'Y production probes QCD in the intermediate domain

@ PANDA is the ideal experiment for measurement of
antihyperon-hyperon channels

@ Hyperons pose a challenge due to displaced vertices

@ Tracking algorithms dedicated to STT will be extended to
reconstruct p, with skewed straws

Thank you for your attention!
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Backup
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Code structure

Algorithm implemented in a PndTask.
Input branches:

@ PndTrack - Standard PANDA track object
@ PndTrackCand - PndSttHits belonging to track
@ PndRiemannTrack - Riemann circle parameters to track
Functions:
@ MoveSkewedHitstoCircle
- Calculates all possible (z, ¢) in skewed straw

@ HoughTruelsoFinder
- Fills accumulator space, find maximum, rejects fake hits with
POCA
@ LineCombilsoFinder
- Generates lines, calculates angles, find best path
@ PzLineFitExtract

- Simple line fit to true (z, ¢) hits and extracts helix angle
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Hyperon channels in PANDA /\<

Why antihyperon-hyperon

. N P
roduction? RN
P A <
+

@ Hyperons produced at scales m

where QCD is poorly understood _
Figure: AA production channel,

° CP v.|olat|on B ngeded to ] scarce data above /s = 4 GeV
describe matter in the universe

@ Never-before measured hyperon
states

@ Measure properties e.g. spin of
hyperons

. =t :
Figure: Q Q7 production channel,
never measured 2/2



Hyperon production pp — Y'Y

Figure: pp — Y'Y in quark-gluon picture (left) and in Hadron picture
(right).
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Hyperons: Spin observables in pp — Y'Y

Spin observables can be used to test theoretical model. Angular
distribution related to

3 3
— BpTT
| E g aaX i PPy kuk,
w,v=0 k,I=0

With unpolarised beam and unpolarised target, differential cross section
Xoooo. Polarisation xoou0 = Pr, Xooor = Pi and the spin correlations
Xoour = Cjj are accessible.

Polarisation Spin correlation

@ 3 polarisation parameters for @ 9 spin correlation parameters
spin—% hyperons: P, P,, P, for spin—% hyperons: G ;

@ P, = P, =0 due to strong 0 Cy=Cx=C,=(C,=0
production due to strong production

@ P, = Py due to rotational @ C,, = C, due to rotational
invariance ) invariance )
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Hyperons: Spin observables in pp — Y'Y

Polarised Particle | None | Beam | Target | Both
None loooo | Aiooo Aogjoo | Ajjoo
Scattered POO[,LO DiOuO KOqu Miqu
Recoil Pooor | Kioow Dojor | Nijou

Both Coopr | Giopw | Cojw | Ccypn

@ In pp — Y'Y there are 256 spin variables in total

22/22



Hyperons: Spin observables in pp — Y'Y

Spin correlation

Proton angular distribution: Nucleon angular distribution:
1(6,) 1(1—1—Pcos€) 1(6;,0 ! 1
= — o .0 = ——
a 47 Y P (81, 6)) 167r2( +
@, o - decay asymmetry parameter aaz C;j cos 0; cos b;)
iJ




Accessible hyperons at PANDA

pp— AA, T3, T30, S-x¢, B0=°, B'E, 00 ACAT
! ! l l l l l 1
pr~ pr® Ay nar An® Am  AK Ar
64% 2% ~100% ~100% ~100% =~100% 68% ~1%
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