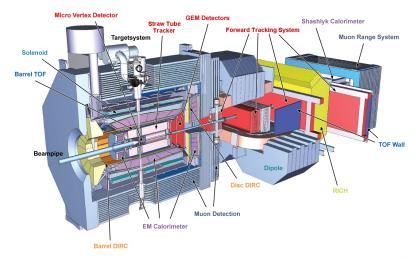
Peformance of Prototypes for the Barrel Part of the PANDA Electromagnetic Calorimeter

Christoph Rosenbaum, S. Diehl, V. Dormenev, P. Drexler, M. Kavatsyuk, T. Kuske, S. Nazarenko, R. W. Novotny, P. Rosier, A. Ryazantsev, P. Wieczorek, A. Wilms and H.-G. Zaunick for the PANDA collaboration

FAIRNESS 2016

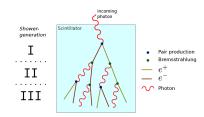
February 16th, 2016



Introduction

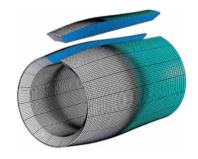
PANDA Detector

- \bullet fixed target experiment with $\overline{p}\text{-beam}$ (1.5-15 GeV/c) on p
- details: talk by Alicia Sanchez-Lorente



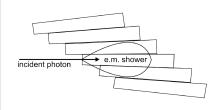
February 16th, 2016

Calorimetry


Why a calorimeter?

A lot of physics channels with photons

PANDA Barrel EMC


- design and PWO crystals adapted from the CMS ECAL
- much lower photon energies \rightarrow more light needed \rightarrow operation temperature at $-25^{\circ}~\mathrm{C}~\rightarrow$ PWO-II
- 11360 PWO-II crystals divided into 16 slices each containing 11 tapered crystal geometries

EMC

Requirements for the EMC

- compact and radiation hard material
- sufficient energy, time and spatial resolution
- capability of handling high interaction rates
- geometrical coverage

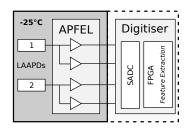
Properties PWO-II

Density	8.28 g/cm^3
Radiation length	8.28 g/cm ³ 0.89 cm
Molière radius	2.0 cm
Decay time	6.5 ns
dE/dx (minimum ionising particle)	10.2 MeV/cm
Light yield (LY) relative to Nal	,
at −25 °C	2.5 %

LAAPD

Characteristics

- \bullet 200 μ m thick
- thin conversion layer to prevent nuclear counter effect
- high QE in the wavelength range of PWO
- insensitive to magnetic field
- 1 cm² effective area



Advantages of two LAAPDs

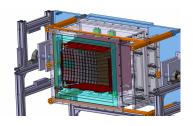
- \bullet low energy threshold for 10 MeV photons \to collect as much scintillation light as possible
- improves energy resolution at low energies
- rejection of fake events caused by neutrons
- backup

Readout Electronics

- each crystal equipped with two LAAPD which are read out simultaneously by one APFEL ASIC 1.4
- two channels with different gains
- ullet dynamic range (1 MeV up to 12 GeV) of 10000
- programmable amplification between 16-32
- autocalibration possible
- event rate capability: up to 500 kHz
- low power consumption: 55 mW

ENC	< 1 fC
Max. input charge	> 6 pC
Detector capacitance	300 pF
Event rate per Channel	up to 350 kHz
Operation temperature	-25 °C
Power consumption	< 60 mW/ch
Number of channels	≈ 22000

PANDA Barrel EMC


Prototypes

PROTO60 vs. PROTO120

- single APD readout with 1 cm² effective area (quadratic)
- low-noise low-power charge sensitive preamplifier (LNP)
- required resolution parameters achieved

PROTO120

- 120 PWO crystals of type 1, 2 and 3
- 2 LAAPDs per crystal
- APFEL readout 1.4 with final dynamic range
- close to final mechanics

Energy Resolution of the PANDA Barrel EMC

Impact of the energy resolution

- \bullet accuracy of the invariant mass determination, such as ${\rm J}/\psi$ states
- ullet influences determination of the E/p ratio of e^- and e^+

$$\frac{\sigma}{E} = \frac{2\%}{\sqrt{E/\text{GeV}}} \oplus 1\%$$

Statistical term

- Poisson statistics of the light collection process
- crucial because of low energies and low LY of PWO
- needed to identify light mesons (π^0 and η) which contribute significantly to the background
- \bullet reconstructed width of less than 8 $\rm MeV/c^2$ (π^0) and 30 $\rm MeV/c^2$ $(\eta) \rightarrow$ 2%

Energy Resolution of the PANDA Barrel EMC

Impact of the energy resolution

- \bullet accuracy of the invariant mass determination, such as ${\rm J}/\psi$ states
- influences determination of the E/p ratio of e^- and e^+

$$\frac{\sigma}{E} = \frac{2\%}{\sqrt{E/\text{GeV}}} \oplus \frac{1\%}{}$$

Constant term

- resolution limit at high energies coming from crystal properties and leakage of energy
- a linear response and a cross calibration are crucial
- ullet limit determined by the separation of e^- and e^+ from π 's via their E/p ratio
- should be comparable to the momentum resolution of the tracking detectors to prevent a deterioration of $E/p\to 1\%$

Energy Threshold

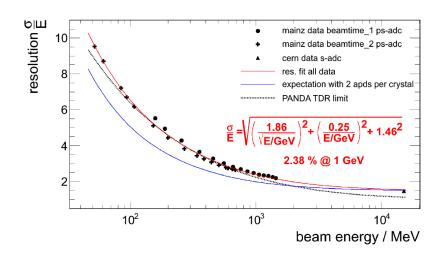
Impact of the energy threshold

- reconstruction of low energetic photons which are a major contribution to many background channels
- ullet charmonium physics program: many interesting channels have a significantly lower production ratio than the expected background contribution \to detect all photons for efficient background rejection

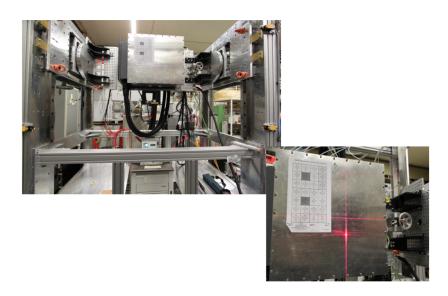
Limitation of the energy threshold

- electronic noise of a single channel
- distribution of the deposited energy at low energies

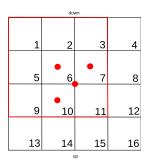
Required energy threshold

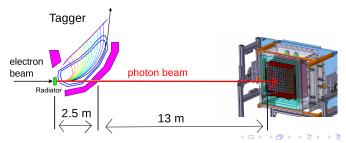

- \bullet compromise threshold of 10 ${\rm MeV} \rightarrow {\rm single}$ crystal threshold of 3 ${\rm MeV}$
- \bullet simulations with threshold of 10 ${\rm MeV}\colon$ only 1% of the $\pi^0\text{-mesons}$ cannot be reconstructed
- \bullet simulations with threshold of 30 ${\rm MeV}\colon$ already 10% cannot be reconstructed

PROTO60


Energy Resolution PROTO60

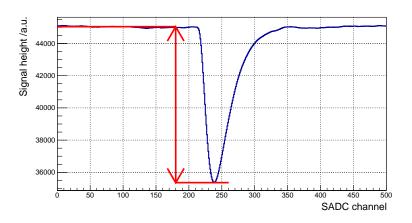
- ullet low noise level (summation threshold 0.85 ${
 m MeV})$
- good agreement with the requirements in the TDR


Beamtime PROTO120


Beamtime in April 2015

Setup of the Matrix

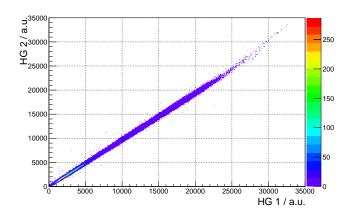
- read out 16 crystals (64 channels) of type II with SADCs (SIS3302)
- 830 MeV tagged photon beam
 - calibration run in each crystal
 - long run in the center of 3x3 (crystal 6), center of 4x4 and crystal 7 and 10
- only relative gain 32 analysed



Feature Extraction

Feature Extraction

• one sampled event (20 ns per bin)

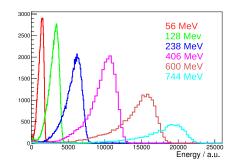

Energy information

 ${\sf Energy} = {\sf Baseline} \ {\sf -Minimum}$

Calibration and Analyse

APD Calibration

• 1. step: summing up information of both APDs

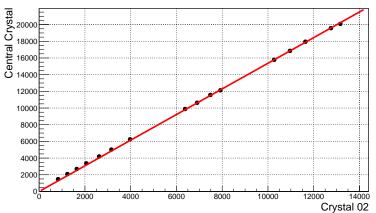

- APD linearity of the central crystal for the high gain branch
- plotted are signal amplitudes of both APDs
- slope used as scaling factor for calibration

Relative Beam Calibration

Why a cross calibration?

- shower distributes over a number of crystals
- information has to be summed up
- cross calibration is necessary because each module is read out individually

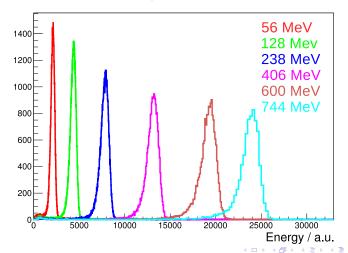
Cross calibration

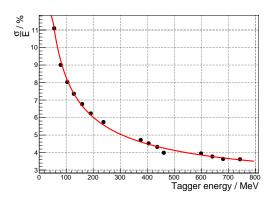

- runs with beam in center of each crystals
- tagged lineshapes of each crystal are plotted with Novosibirsk function:

$$f(x) = Ae^{-\frac{1}{2}\left(\frac{\ln^2(1+\Lambda\tau(x-\mu_{max}))}{\tau^2} + \tau^2\right)}$$
 with $\Lambda = \frac{\sinh(\tau\sqrt{\ln 4})}{\sqrt{\ln 4}}$, asymmetry τ , width $\tilde{\sigma} \equiv \frac{FWHM}{2\sqrt{\ln 4}}$ and mode μ_{max}

Relative Beam Calibration

Cross calibration


central crystal is used as reference crystal to calibrate the matrix

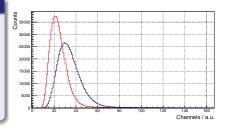

Energy resolution

Energy Resolution

- ullet calibrated 3 imes 3 matrix is summed with a summation threshold of 2.7 MeV
- summed lineshapes are fitted with a Novosibirsk function
- ullet energy resolution is defined as σ/E

Energy Resolution

Fit parametrization

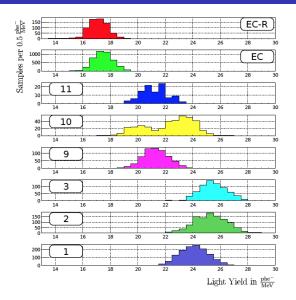

$$\frac{\sigma}{E} = \frac{0.16\%}{E/\mathrm{GeV}} \oplus \frac{2.46\%}{\sqrt{E/\mathrm{GeV}}} \oplus 2.32\%$$

Noise

Noise Level

Definition of noise

- electronic noise: RMS of the baseline (without presence of a signal)
- summation threshold = mean $+ 3\sigma$ (99.7% of noise contribution rejected)



Noise level

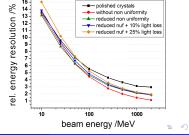
- HG1: 0.72 MeV (electronic noise) \rightarrow summation threshold: 2.7 MeV
- too high for foreseen triggerless readout
- ullet Adding traces before feature extraction: 1.8 ${
 m MeV}$
- \Rightarrow Improvement of $\sqrt{2}$ by adding traces

Non-uniformity in light collection

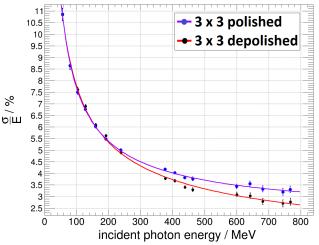
Distribution of the Light Yield for Tapered Crystals

⇒ the larger the level of tapering, the higher the light yield output

Influence of Light Collection Non-uniformity on the Energy Resolution


What is NUF?

- interplay between focussing and absorption of the produced scintillation light
- possibility: linearizing light collection by one depolished crystal side


Simulation with GEANT4

- simulation includes NUF, photon statistics and APD characteristics (no single photon tracking)
- interaction in center of type 1 section
- \bullet threshold = 1.6 MeV

Experimental Results of Depolished Matrix

 comparison of the energy resolution of a 3x3 polished and a 3x3 depolished matrix

Comparison with PROTO60

Summary & Outlook

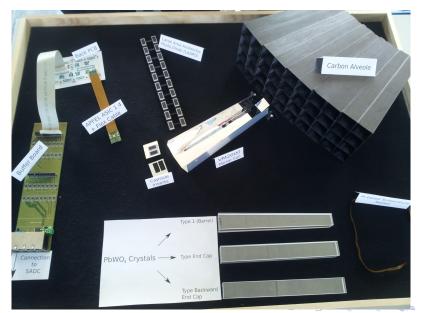
Summary

- successful beamtime tests with two prototypes of the Barrel EMC
- overall concept of the Barrel EMC is fixed
- energy resolution sufficient but still room for improvement
- effective noise of the PROTO120 higher than PROTO60
- direction of improvement:
 - cross calibration
 - test with a 5 × 5 matrix needed
- depolished: better energy resolution but losing light

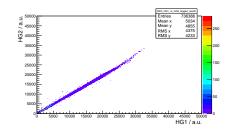
Outlook

goal: build a slice at the end of the year

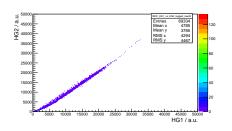
Thank you for your attention!

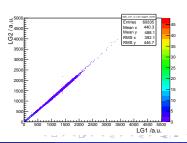

35 / 35

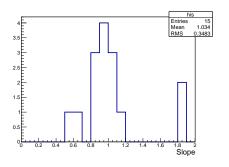
Backup

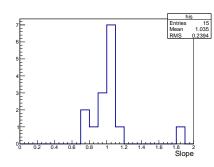

Assembly

Readout

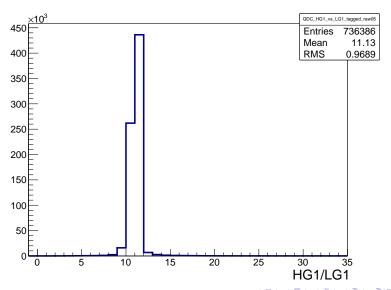



APD linearity


APD linearity

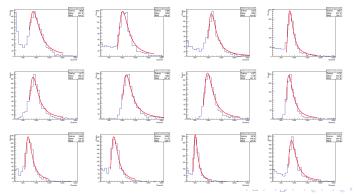

- HG of the central crystal (upper left), HG of crystal 1 (lower left) and LG of crystal 1 (lower right)
- Kink due to wrong ASIC programming
- linear part fitted and used as APD calibration

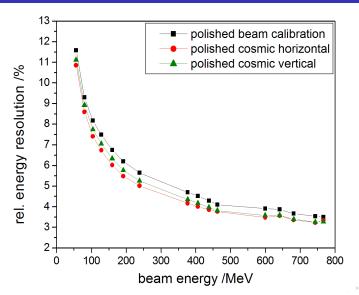
Slopes



Slopes

- Distribution of APD linearity slopes for HG (left) and LG (right)
- Variation possibly due to wrong APD gain


Gain


Cosmic calibration

Method

- absolute calibration based on energy deposition of cosmic muons
- horizontal 26.5 MeV and vertical 220 MeV energy deposition
- calibration factor (horizontal 44.1 ch/MeV and vertical 44.5 ch/MeV) different to GEANT4 based calibration (39.2 ch/MeV)

Comparison of obtained energy resolutions with different calibrations

