

First results of a global analysis of pion pair production in proton and antiproton annihilation

Supervisors: Egle Tomasi-Gustafsson

Dominique Marchand

Collaborator: Yury Bystritskiy

Content

Introduction

- Panda experiment
- Motivation

Effective meson theory Results

- Neutral particles

- Charged particles
- Crossing symmetry

Summary

Panda Detector

4п acceptance

Tracking momentum resolution 1%

Interaction rate 20MHz

PID Charge and neutral particles π, K, e, p, μ

γ detection from 3 MeV - 10 GeV

Motivation of my work

- The reaction $\bar{p}p \rightarrow e^+e^-$ allows to measure electromagnetic proton form factors.
- Important simulation work is under way.
- The reaction $\bar{p}p \rightarrow \pi^+\pi^-$ is the main background :
 - has a large cross section,
 - contains information on the quark content of the proton
 - allow to test different QCD models

Largest cross sections come from multi-pions (5 > 4 > 2)

Motivation of my work

Few experimental data at the PANDA energies to constrain the models

 $\overline{p}p \rightarrow \pi^+\pi^-$

Extrapolation of existing models

to Panda range is risky

Few and incomplete angular distributions data of annihilation

4 (6 sets of $\pi^+\pi^-$ in panda energy region)

Motivation of this model

Global description in Panda energy range

Developing an effective Lagrangian model based on Feynman diagrams to describe binary annihilation reactions induced by antiprotons in Panda energy region.

Describe the similar production $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -},\,\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$ in a coherent way

Getting a reliable s dependence to predict the panda region where there are very few data

Low Energy Model

Low energy $(p_{Lab} < 1 \text{ GeV/c})$

Take into account nucleon and Δ exchange in the Lagrangian

$$L_{\mathrm{pp}\pi_0} = \frac{g_{\pi \mathrm{NN}}}{2m} \,\bar{\psi} \gamma^{\mu} \gamma^5 \psi \partial_{\mu} \phi \,, \qquad L_{\mathrm{p}\Delta_{++}\pi_{+}} = g_{\pi \mathrm{N}\Delta} (\bar{\psi}_{\mu} \psi \partial^{\mu} \phi + \mathrm{h.c.}) \,$$

Instead of schrodinger equation, using optical model to generate the initial-state interaction

$$V_{++} = \frac{p}{m}A + q \cos \theta B$$
, $V_{+-} = \frac{q}{m}E_{\rm p}(-\sin \theta e^{i\phi})B$

With two parameters in vertex form factors,

$$F(p_1, p_2, p_3) = \prod_{i=1}^{3} e^{(p_i^2 - m_i^2)/2\Lambda_i^2}$$

6

Intermediate energy Model

p _{Lab} <1.94 GeV/c	List of Resonances			
	J^P	Mass M (MeV)	Width Γ (MeV)	$\Delta \chi^2$
Partial wave amplitude T _{L, J} as sums over resonances	6+	2485 ± 40	410 ± 90	1776
	5-	~ 2500	~ 470	112
	5-	2295 ± 30	235^{+65}_{-40}	2534
	4+	~ 2500	~ 400	1305
	4+	2300 ± 25	270 ± 50	2549
$T_{L,J} = \sum_{i=1}^{\infty} \frac{G_i B_L(p) B_J(q) \exp(i\phi_i)}{M_i^2 - s - iM_i \Gamma_i}$	4 +	2020 ± 12	170 ± 15	22382
	3-	2300^{+50}_{-80}	340 ± 150	183
	3-	2210 ± 40	360 ± 55	368
	3-	1960 ± 15	150 ± 25	2957
	2+	~ 2620	~ 430	776
D.V. Bugg.et al, NPB 471 (1996) 59	2+	2300 ± 35	290 ± 50	2879
	2+	2230 ± 30	245 ± 45	2290
	2+	2020 ± 30	275 ± 35	2980
	2+	1910 ± 30	260 ± 40	2286
	1 -	2165 ± 40	160^{+140}_{-70}	450
	1 -	2005 ± 40	275 ± 75	1341
	1 -	(1700)	(180)	8444
	0 +	2320 ± 30	175 ± 45	1257
	0 +	2105 ± 15	200 ± 25	4030
	0 +	2005 ± 30	305 ± 50	370
	0+	(1700)	1000	2844

7 A.V. Anisovich, et al., PLB 471 (1999) 271–279

Evolution of oscillatory behavior : Sum of resonances

High Energy Model

High energy (1.5 GeV/c $< p_{Lab} < 15$ GeV/c)

Ad-hoc Regge parametrization

J. Van de Wiele and S. Ong, EPJ A 46 (2010) , 291–298

Parameters adjusted to the data.

Fails to extrapolate outside range

ARTICLES

T. A. Amstrong, al

Calculation pp $\rightarrow \pi^{\circ}\pi^{\circ}$

Differential cross section

- ✓ (e.g.)Nucleon exchange
 - Vertex: $-ig_{\pi NN}(i\gamma_5)(2\pi)^4$

• Propagator:
$$\frac{i}{(2\pi)^4} \frac{\hat{q}_t + M_p}{q_t^2 - M_p^2}$$
$$|\overline{\mathcal{M}}_n|^2 = \mathcal{M}_n A^*(a) = \frac{g_{\pi NN}^4}{(q^2 - M_p)^2} Tr\left[(\hat{p}_1 - M_p)(\hat{q} + M_p)^2(\hat{p}_2 + M_p)\right]$$

About 10⁸ difference In the absolute value of the differential cross section (compositeness of particles, absorption, ISI, FSI...) => add Regge factors and form factors

$$R_N(t) = \left(\frac{s}{p_3}\right)^{\frac{1}{2} + p_2(\frac{t - M_p^2}{M_p^2})} \quad F_N(t) = (t - p_0^2)^2$$
$$R_\Delta(u) = \left(\frac{s}{p_3}\right)^{\frac{3}{2} + p_4(\frac{t - M_\Delta^2}{M_\Delta^2})} \quad F_\Delta(u) = (u - p_1^2)^2$$

11

our fit of π°π°

Data from T. A. Amstrong al. PRD(56) 5 1997

First results for $pp \rightarrow \pi^{\circ}\pi^{\circ}$

S-dependence $pp \rightarrow \pi^{\circ}\pi^{\circ}$

Test of quark counting

PRL (1973) 31. 18. S. J. Brodsky, G. R. Farrar Scaling Laws at Large Transverse Momentum

 $d\sigma/dt \sim s^{2-n} f(t/s)$

n total number of leptons, photons and quark components

Reaction pp $\rightarrow \pi^{o}\pi^{o}$

n=ni+nf=2x(3+2)=10 2-n=-8

 $d\sigma/dt \sim s^{-8} f(t/s)$

LETTERE AL NUOVO CIMENTO (1973) 5 14 V. A. Matveev et al. Automodelity in Strong Interactions.

S-dependence $pp \rightarrow \pi^{\circ}\pi^{\circ}$

15

Π and η mesons are pseudoscalar mesons. The decay to ηη can be described from $π^0 π^0$ using the well-known decomposition of singlet and octet states, where the mixing angle is $Θ \approx 40^\circ$

$$f(\eta\eta) = f(\pi^0\pi^0) \cos^2\Theta$$

Calculation $pp \rightarrow \pi^+\pi^-$

Calculation $pp \rightarrow \pi^+\pi^-$

20

$\pi^- p \rightarrow \pi^- p \& pp \rightarrow \pi^+\pi^- crossing symmetry$

 $p(p_1)+p(p_2) \rightarrow \pi^-(k_1)+\pi^+(k_2)$

Annihilation (a)

Elastic scattering (s)

$$\begin{split} s_{s} &= (-k_{2} + p_{2})^{2} \to t_{a} \\ t_{s} &= (-k_{2} - k_{1})^{2} \to s_{a} \\ u_{s} &= (-k_{2} + p_{1})^{2} \to u_{a} \\ \sigma^{a} &= \frac{1}{2} \frac{|\mathcal{M}_{(a)}|^{2}}{64\pi^{2}s} \frac{|\vec{k}_{a}|}{|\vec{p}_{a}|} \\ \sigma^{s} &= \frac{1}{2} \frac{|\mathcal{M}_{(s)}|^{2}}{64\pi^{2}s} \frac{|\vec{k}_{s}|}{|\vec{p}_{s}|} \\ \sigma^{s} &= \frac{1}{2} \frac{|\mathcal{M}_{(s)}|^{2}}{64\pi^{2}s} \frac{|\vec{k}_{s}|}{|\vec{p}_{s}|} \\ \sigma^{s}(s) &= \sigma^{s}(s_{1}) \cdot \frac{s^{-2}}{s_{1}^{-2}} \\ \sigma^{a}(s) &= f \sigma^{s}(s_{1}) \cdot \frac{s^{-2}}{s_{1}^{-2}} \end{split}$$

 σ

 σ

 $\pi^{-}p \rightarrow p\pi^{-}$

Summary

- We have built a promising model based on effective lagrangian to describe 2 meson production in pbar p annihilation

- Parameters fixed on $\pi^0\pi^0$
- neutral channel obtained from SU3 symmetry: η η , η π^0
- We reproduced $\pi^+\pi^-$
- We reproduced π^+p , π^-p using crossing symmetry
- Encouraging results on angular distributions and the expected s dependence have been obtained

Perspectives

Optimize the parameters to improve charged pion description at small angles

Apply similar formalism to other channels: $\gamma \gamma, \gamma \pi^0, KK$

Goal:

To build a generator based on our model

