Lattice QCD and physics at FAIR

Dénes Sexty
 Wuppertal University

FAIRNESS 2016 Garmisch-Partenkirchen $16^{\text {th }}$ of February

Collaborators: Gert Aarts, Erhard Seiler, Ion-Olimpiu Stamatescu Felipe Attanasio, Lorenzo Bongiovanni, Benjamin Jäger, Zoltán Fodor, Sándor Katz, Csaba Török

1. Sign problem (of lattice QCD)
2. Ideas to solve it
3. Some results extrapolating from $\mu=0$
4. Complex Langevin equation Toy models
Lattice models - HDQCD and full QCD

From action to phenomenology

$$
S=-\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F^{\mu v}+\sum_{1}^{6} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}+m_{f}\right) \psi_{f} \quad 7 \text { parameters }
$$

4 Confinement mechanism?

> Mass of hadrons?

Scattering cross sections?
Phases transition to Quark-gluon plasma?
Critical point at nonzero density?
Equation of state?
Compressibility of quark matter? (in neutron stars)
Exotic phases:
Color superconducting phases?
Quarkyonic phase?
QCD in magnetic fields?
How?
.... and so on
Perturbation theory
Kinetic theory
Effective models (NJL, Polyakov-NJL, SU(3) spin model, ...)
Functional methods (FRG, 2PI, Dyson-Schwinger eq.)
Lattice

Lattice QCD

Discretise action on a cubic-space time lattice $N^{3} N_{T}$
Gauge fields

$$
A_{\mu}^{a}(x) \rightarrow U_{\mu}(x)=\exp \left(i \int d x A_{\mu}^{a}(x) \lambda_{a}\right)
$$

Link variables $U_{\mu}(x) \in \operatorname{SU}(3)$
Quark fields $\quad \psi(x)$

Discretised action: $\quad-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \rightarrow \sum_{\text {plaquettes }} \operatorname{Tr}\left(U_{\mu \nu}-U_{\mu \nu}^{+}\right)$
Plaquette variables $U_{\mu \nu}(x)=U_{\mu}(x) U_{v}(x+\hat{\mu}) U_{\mu}^{-1}(x+\hat{v}) U_{v}^{-1}(x)$

$$
i \gamma^{\mu} D_{\mu}+m \rightarrow 1+\kappa \sum_{ \pm \mu}\left(1+\gamma_{\mu}\right) U_{\mu}(x) \delta_{y, x+\hat{\mu}}
$$

Wilson fermions
(or staggered, overlap...)

We want continuum and thermodynamical limit at the physical point

$$
\begin{aligned}
& a \rightarrow 0, V \rightarrow \infty \\
& m_{\pi}=135 \mathrm{MeV}
\end{aligned}
$$

Path integral formulation of QCD

Euclidean SU(3) gauge theory with fermions:
4d lattice Temporal extent = inverse temperature

$$
\begin{gathered}
Z=\int D A_{\mu}^{a} D \bar{\Psi} D \Psi \exp \left(-S_{E}\left[A_{\mu}^{a}\right]-\bar{\Psi} D_{E}\left(A_{\mu}^{a}\right) \Psi\right) \\
A_{\mu}^{a}(x) \rightarrow U_{\mu}(x) \\
D_{E}(A) \rightarrow M(U) \text { fermion matrix }
\end{gathered}
$$

Integrating out fermions

$$
Z=\int D U \exp \left(-S_{E}[U]\right) \operatorname{det}(M(U))
$$

Haar measure of SU(3) group
$\operatorname{SU}(\mathrm{N})$ is compact
Finite volume of gauge orbits
No gauge fixing neccesary No Fadeev-Popov complication

We are interested in a system Described with the partition sum:

$$
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\sum_{C} W[C]
$$

Typically exponentially many configurations, no direct summation possible.

If the Weight is positive, build a Markov chain with the Metropolis alg.

$$
\ldots \rightarrow C_{i-1} \rightarrow C_{i} \rightarrow C_{i+1} \rightarrow \ldots
$$

Probability of visiting C $\quad p(C)=\frac{1}{N_{W}} W[C]$

$$
\langle X\rangle=\frac{1}{Z} \operatorname{Tr} X e^{-\beta(H-\mu N)}=\frac{1}{N_{W}} \sum_{C} W[C] X[C]=\frac{1}{N} \sum_{i} X\left[C_{i}\right]
$$

This works if we have $\quad W[C] \geq 0$

Otherwise we have a Sign problem

QCD sign problem

Euclidean SU(3) gauge theory with fermions:

$$
Z=\int D U \exp \left(-S_{E}[U]\right) \operatorname{det}(M(U))
$$

for $\operatorname{det}(M(U))>0$ Importance sampling is possible \longrightarrow Hadron masses, EOS, ...

Non-zero chemical potential

For nonzero chemical potential, the fermion determinant is complex
$\operatorname{det}\left(M\left(U,-\mu^{*}\right)\right)=(\operatorname{det}(M(U), \mu))^{*}$

Sign problem \rightarrow Naive Monte-Carlo breaks down

Sign problems in high energy physics

Real-time evolution in QFT

"strongest" sign problem
$e^{i S_{M}}$
Non-zero density (and fermionic systems)

$$
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int D U e^{-s[U]} \operatorname{det}(M[U])
$$

Many systems: Bose gas XY model SU(3) spin model Random matrix theory QCD

Theta therm

$$
S=F_{\mu \nu} F^{\mu v}+i \Theta \epsilon^{\mu v \theta \rho} F_{\mu \nu} F_{\theta \rho}
$$

And everything else with complex action

$$
w[C]=e^{-S[C]} \quad w[C] \text { is positive } \leftarrow \rightarrow S[C] \text { is real }
$$

How to solve the sign problem?

Probably no general solution - There are sign problems which are NP hard
[Troyer Wiese (2004)]

Many solutions for particular models with sign problem exist

Transforming the problem to one with positive weights

$$
\begin{gathered}
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\sum_{C} W[C]=\sum_{D} W^{\prime}[D] \quad \begin{array}{c}
\text { Dual variables } \\
\text { Worldlines }
\end{array} \\
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\sum_{n} Z_{n} e^{\beta u n} \quad \text { Canonical ensemble } \\
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\int d E \rho_{\mu}(E) e^{-\beta E} \quad \text { Density of states } \\
Z=\operatorname{Tr} e^{-\beta(H-\mu N)}=\sum_{C} W[C]=\sum_{S}\left(\sum_{C \in S} W[C] \quad\right. \text { Subsets }
\end{gathered}
$$

How to solve the sign problem?
Extrapolation from a positive ensemble
Reweighting $\langle X\rangle_{W}=\frac{\sum_{c} W_{c} X_{c}}{\sum_{c} W_{c}}=\frac{\sum_{c} W^{\prime}{ }_{c}\left(W_{c} / W^{\prime}{ }_{c}\right) X_{c}}{\sum_{c} W^{\prime}{ }_{c}\left(W_{c} / W^{\prime}{ }_{c}\right)}=\frac{\left\langle\left(W / W^{\prime}\right) X\right\rangle_{W^{\prime}}}{\left\langle W / W^{\prime}\right\rangle_{W^{\prime}}}$
Taylor expansion $\quad Z(\mu)=Z(\mu=0)+\frac{1}{2} \mu^{2} \partial_{\mu}^{2} Z(\mu=0)+\ldots$

Analytic continuation from imaginary sources (chemical potentials, theta angle,..)

Using analyticity (for complexified variables)
Complex Langevin
Complexified variables - enlarged manifolds

Lefschetz thimble
Integration path shifted onto complex plane

In QCD direct simulation only possible at $\mu=0$

Taylor extrapolation, Reweighting, continuation from imaginary μ, canonical ens. all break down around

$$
\frac{\mu_{q}}{T} \approx 1-1.5 \quad \frac{\mu_{B}}{T} \approx 3-4.5
$$

Around the transition temperature
Breakdown at

$$
\mu_{q} \approx 150-200 \mathrm{MeV} \quad \mu_{B} \approx 450-600 \mathrm{MeV}
$$

Results on
$N_{T}=4, N_{F}=4, \mathrm{ma}=0.05$
using
Imaginary mu,
Reweighting, Canonical ensemble

Agreement only at $\mu / T<1$

Is there a critical point?

Critical point in (T, μ) plane \rightarrow Critical surface in $\left(T, \mu, m_{u d}, m_{s}\right)$ space

Order of the transition at $\mu=0$

μ $\begin{array}{r}\text { Real world }-\square \\ \text { Heavy quarks }\end{array}$

Which

 Scenario?

Calculate curvature at $\mu=0$

Taylor expansion of the EOS

$$
p\left(T, \mu_{i}\right)=p(T, 0)+\frac{T^{2}}{2} \chi_{2}^{i j} \mu_{i} \mu_{j} \quad \chi_{2}^{i j}=\frac{1}{T V} \frac{\partial^{2} \log \mathrm{Z}(\mu=0)}{\partial \mu_{i} \partial \mu_{j}} \quad i, j=u, d, s
$$

χ_{4} is used to estimate errors
Continuum estimate, physical quark masses, zero strangeness

At constant μ

Taylor expansion of the EOS

$$
p\left(T, \mu_{i}\right)=p(T, 0)+\frac{T^{2}}{2} \chi_{2}^{i j} \mu_{i} \mu_{j} \quad \chi_{2}^{i j}=\frac{1}{T V} \frac{\partial^{2} \log \mathrm{Z}(\mu=0)}{\partial \mu_{i} \partial \mu_{j}} \quad i, j=u, d, s
$$

χ_{4} is used to estimate errors
Continuum estimate, physical quark masses, zero strangeness

At constant entropy/particle number

Stochastic Quantization

Given an action $S(x)$

Stochastic process for x :

$$
\frac{d x}{d \tau}=-\frac{\partial S}{\partial x}+\eta(\tau)
$$

$$
\text { Gaussian noise }\langle\eta(\tau)\rangle=0
$$

$$
\left\langle\eta(\tau) \eta\left(\tau^{\prime}\right)\right\rangle=\delta\left(\tau-\tau^{\prime}\right)
$$

Averages are calculated along the trajectories:

$$
\langle O\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau)) d \tau=\frac{\int e^{-S(x)} O(x) d x}{\int e^{-S(x)} d x}
$$

Fokker-Planck equation for the probability distribution of $\mathrm{P}(\mathrm{x})$:
$\frac{\partial P}{\partial T}=\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial x}+P \frac{\partial S}{\partial x}\right)=-H_{F P} P$
Real action \rightarrow positive eigenvalues
for real action the
Langevin method is convergent

Langevin method with complex action

The field is complexified

$$
\frac{d x}{d \tau}=-\frac{\partial S}{\partial x}+\eta(\tau)
$$

real scalar \rightarrow complex scalar

$$
\begin{aligned}
& \text { link variables: } \operatorname{SU(N)} \longrightarrow \operatorname{SL}(\mathbb{N}, \mathrm{C}) \\
& \text { compact } \text { non-compact } \\
& \operatorname{det}(U)=1, \quad U^{+} \neq U^{-1}
\end{aligned}
$$

Analytically continued observables

$$
\begin{gathered}
\frac{1}{Z} \int P_{\text {comp }}(x) O(x) d x=\frac{1}{Z} \int P_{\text {real }}(x, y) O(x+i y) d x d y \\
\left\langle x^{2}\right\rangle_{\text {real }} \rightarrow\left\langle x^{2}-y^{2}\right\rangle_{\text {complexififed }}
\end{gathered}
$$

"troubled past": Lack of theoretical understanding
Convergence to wrong results
Runaway trajectories

Klauder '83, Parisi '83, Hueffel, Rumpf '83, Karsch. Wyld '84, Gausterer, Klauder '86.
Matsui, Nakamura '86, ...
Interest went down as difficulties appeared
Renewed interest in connection of otherwise unsolvable problems
applied to nonequilibrium: Berges, Stamatescu '05, ...
aimed at nonzero density QCD: Aarts, Stamatescu '08

New results about complex Langevin in the last decade or so

1. Study many exactly solvable toy models to gain more understanding one-plaquette model, random matrices, thirring model, few variable models, Polyakov chain
2. Theoreretical discussion and practical methods

Proof of convergence
Gauge cooling
Non-holomorphic actions
3. Lattice models

Non-equilibrium QFT (scalar field theory, pure gauge theory)
XY model, SU(3) spin models, Bose gas
Applications also in condensed matter: Bose gas in rotating frame, Imbalanced Fermi gas
4. Approximations to QCD

HDQCD, kappa expansion
5. full QCD

Proof of convergence

If there is fast decay $\quad P(x, y) \rightarrow 0$ as $y \rightarrow \infty$ and a holomorphic action $S(x)$
then CLE converges to the correct result
[Aarts, Seiler, Stamatescu (2009)
Aarts, James, Seiler, Stamatescu (2011)]

Non-holomorphic action for nonzero density

$$
S=S_{W}\left[U_{\mu}\right]+\ln \operatorname{Det} M(\mu)
$$

measure has zeros (Det $M=0$)
complex logarithm has a branch cut

- meromorphic drift
[Mollgaard, Splittorff (2013), Greensite(2014)]

Gaussian Example

$$
S[x]=\sigma x^{2}+i \lambda x
$$

CLE

$$
\frac{d}{d \tau}(x+i y)=-2 \sigma(x+i y)-i \lambda+\eta
$$

$$
P(x, y)=e^{-a\left(x-x_{0}\right)^{2}-b\left(y-y_{0}\right)^{2}-c\left(x-x_{0}\right)\left(y-y_{0}\right)}
$$

Gaussian distribution around critical point

$$
\left.\frac{\partial S(z)}{\partial z}\right|_{z_{0}}=0
$$

Measure on real axis

Simple model of QCD with finite chemical potential

Euclidean U(1) One plaquette model with "fermion determinant"

$$
\begin{array}{r}
Z=\int_{0}^{2 \pi} d x e^{-S_{B}} \operatorname{det} M \quad S_{B}=-\frac{\beta}{2}\left(U+U^{-1}\right)=-\beta \cos (x) \quad U=e^{i x} \\
\operatorname{det} M=1+\frac{1}{2} \kappa\left(e^{\mu} U+e^{-\mu} U^{-1}\right)=1+\kappa \cos (x-i \mu)
\end{array}
$$

Similar to QCD fermion determinant:

$$
\operatorname{det} M(\mu)=[\operatorname{det} M(-\mu)]^{*} \quad \operatorname{det} M\left(i \mu_{1}\right) \quad \text { is real }
$$

Exact averages calculated by numerical integration

Fixedpoint structure

Distribution centered around attractive fixedpoints of the flow

μ grows

Fixed points move no change in analytical structure

No breakdown, Langevin works for high

Gauge theories and CLE

Stochastic quantisation on the group manifold

Updating must respect the group structure:

$$
U_{i}^{\prime}=\exp \left(i \lambda_{a}\left(-\epsilon D_{i, a} S[U]+\sqrt{\epsilon} \eta_{i, a}\right)\right) U_{i}
$$

$$
\begin{array}{r}
\left\langle\eta_{i a}\right\rangle=0 \\
\left\langle\eta_{i a} \eta_{j b}\right\rangle=2 \delta_{i j} \delta_{a b}
\end{array}
$$

Left derivative: $\quad D_{a} f(U)=\left|\frac{\partial}{\partial \alpha} f\left(e^{i \lambda_{a} \alpha} U\right)\right|_{\alpha=0}$
λ_{a} Gellmann matrices
complexified link variables

$$
\mathrm{SU}(\mathrm{~N}) \longrightarrow \mathrm{SL}(\mathrm{~N}, \mathrm{C}) \quad \operatorname{det}(U)=1, \quad U^{+} \neq U^{-1}
$$

compact \longrightarrow non-compact

Distance from SU(N)

$$
\sum_{i j}\left|\left(U U^{+}-1\right)_{i j}\right|^{2}
$$

Unitarity Norms:

$$
\begin{aligned}
& \operatorname{Tr}\left(U U^{+}\right) \geq N \\
& \operatorname{Tr}\left(U U^{+}\right)+\operatorname{Tr}\left(U^{-1}\left(U^{-1}\right)^{+}\right) \geq 2 N
\end{aligned}
$$

For SU(2): $\quad(I m \operatorname{Tr} U)^{2}$

Minimize unitarity norm
Distance from SU(N)

$$
\sum_{i} \operatorname{Tr}\left(U_{i} U_{i}^{+}-1\right)
$$

Gauge transformation at x changes 2 d link variables

$$
\begin{aligned}
& U_{\mu}(x) \rightarrow \exp \left(-\alpha \in \lambda_{a} G_{a}(x)\right) U_{\mu}(x) \\
& U_{\mu}\left(x-a_{\mu}\right) \rightarrow U_{\mu}\left(x-a_{\mu}\right) \exp \left(\alpha \in \lambda_{a} G_{a}(x)\right)
\end{aligned}
$$

Steepest descent

Dynamical steps are interspersed with several gauge cooling steps

Gauge cooling leaves Fokker-Planck eq. For gauge invariant quantities unchanged [Nagata, Nishimura, Shimasaki '15]

Empirical observation: Cooling is effective for

$$
\begin{aligned}
\beta>\beta_{\text {min }} \\
a<a_{\text {max }}
\end{aligned}
$$

but remember, $\beta \rightarrow \infty$ in cont. limit
$a_{\max } \approx 0.1-0.2 \mathrm{fm}$

Heavy Quark QCD at nonzero chemical potential (HDQCD)

Hopping parameter expansion of the fermion determinant Spatial hoppings are dropped

$$
\begin{aligned}
& \operatorname{Det} M(\mu)=\prod_{x} \operatorname{det}\left(1+C P_{x}\right)^{2} \operatorname{det}\left(1+C^{\prime} P_{x}^{-1}\right)^{2} \\
& P_{x}=\prod_{\tau} U_{0}\left(x+\tau a_{0}\right) \quad C=[2 \kappa \exp (\mu)]^{N_{\tau}} \quad C^{\prime}=[2 \kappa \exp (-\mu)]^{N_{\tau}} \\
& S=S_{W}\left[U_{\mu}\right]+\ln \operatorname{Det} M(\mu)
\end{aligned}
$$

Studied with reweighting

$$
R=e^{\sum_{x} C \operatorname{Tr} P_{x}+C^{\prime} \operatorname{Tr} P^{-1}}
$$

CLE study using gaugecooling [Seiler, Sexty, Stamatescu (2012)]

Gauge cooling stabilizes the distribution SU(3) manifold instable even at $\mu=0$

Fermion density:

$$
n=\frac{1}{N_{\tau}} \frac{\partial \ln Z}{\partial \mu}
$$

average phase:

$$
\langle\exp (2 i \varphi)\rangle=\left|\frac{\operatorname{Det} M(\mu)}{\operatorname{Det} M(-\mu)}\right|
$$

$\operatorname{det}(1+C P)=1+C^{3}+C \operatorname{Tr} P+C^{2} \operatorname{Tr} P^{-1}$

Sign problem is absent at small or large μ

Reweigthing is impossible at $6 \leq \mu / T \leq 12$, CLE works all the way to saturation

Comparison to reweighting

6^{4} lattice, $\mu=0.85$

Discrepancy of plaquettes at $\beta \leq 5.6$ a skirted distribution develops

$$
a(\beta=5.6)=0.2 \mathrm{fm}
$$

Mapping the phase diagram [Aarts, Attanasio, Jäger, Seiler, Sexty, Stamatescu, in prep.]

fixed $\beta=5.8 \rightarrow a \approx 0.15 \mathrm{fm}$

$$
\kappa=0.12
$$

onset transition at $\mu=-\ln (2 \kappa)=1.43$

$$
\begin{gathered}
N_{t} * 8^{3} \text { lattice } \\
N_{t}=2 . .28
\end{gathered}
$$

Temperature scanning

fermionic density

Polyakov loop

Polyakov loop susceptibility

Hint of first order deconfinement and first order onset transition

Extension to full QCD with light quarks ${ }_{\text {[Sexty (2014)] }}$

QCD with fermions $\quad Z=\int D U e^{-S_{c}} \operatorname{det} M$
Additional drift term from determinant

$$
K_{a x v}^{F}=\frac{N_{F}}{4} D_{a x v} \ln \operatorname{det} M=\frac{N_{F}}{4} \operatorname{Tr}\left(M^{-1} M^{\prime}{ }_{v a}(x, y, z)\right)
$$

Noisy estimator with one noise vector Main cost of the simulation: CG inversion

Inversion cost highly dependent on chemical potential Eigenvalues not bounded from below by the mass (similarly to isospin chemical potential theory)

Unimproved staggered and Wilson fermions

Heavy quarks: compare to HDQCD Light quarks: compare to reweighting

CLE and full QCD with light quarks ${ }_{\text {[Sexty (2014)] }}$

Physically reasonable results

Non-holomorphic action poles in the fermionic drift Is it a problem for full QCD?

So far (at high temperatures), it isn't:
Comparison with reweighting
Study of the spectrum
Hopping parameter expansion

Reweighting

$$
\begin{aligned}
& \langle F\rangle_{\mu}=\frac{\int D U e^{-S_{E}} \operatorname{det} M(\mu) F}{\int D U e^{-S_{E}} \operatorname{det} M(\mu)}=\frac{\int D U e^{-S_{E}} R \frac{\operatorname{det} M(\mu)}{R} F}{\int D U e^{-S_{E}} R \frac{\operatorname{det} M(\mu)}{R}} \\
& =\frac{\left\langle F \operatorname{det} M(\mu) /\left.R\right|_{R}\right.}{|\operatorname{det} M(\mu) / R|_{R}} \quad R=\operatorname{det} M(\mu=0),|\operatorname{det} M(\mu)| \text {, etc. } \\
& \left|\frac{\operatorname{det} M(\mu)}{R}\right|_{R}=\frac{Z(\mu)}{Z_{R}}=\exp \left|-\frac{V}{T} \Delta f(\mu, T)\right| \\
& \Delta f(\mu, T)=\text { free energy difference }
\end{aligned}
$$

Exponentially small as the volume increases $\langle F\rangle_{\mu} \rightarrow 0 / 0$
Reweighting works for large temperatures and small volumes
Sign problem gets hard at $\quad \mu / T \approx 1$

Comparison with reweighting for full QCD

[Fodor, Katz, Sexty, Török 2015]

Reweighting from ensemble at

$$
R=\operatorname{Det} M(\mu=0)
$$

Comparisons as a function of beta

Similarly to HDQCD

Cooling breaks down at small beta

at $N_{T}=4$ breakdown at $\beta=5.1-5.2$

At larger N_{T} ?

Comparisons as a function of beta

$$
N_{T}=6 \quad N_{T}=8
$$

Breakdown prevents simulations in the confined phase for staggered fermions with $N_{T}=4,6,8$

Conclusions

Sign problem of lattice QCD solid results only below $\mu_{q} / T=1$
Evading the sign problem by direct simulations
using complexified fields in the Complex Langevin Equation
Recent progress for CLE simulations
Better theoretical understanding (poles?)
Gauge cooling
Solved models
Bose gas, SU(3) spin model, random matrix theory Condensed matter applications

Phase diagram of HDQCD mapped out
Kappa expansion very high orders for QCD
full QCD with light quarks - only high temperatures so far
Outstanding issues

- What happens if the poles are problematic?

How to diagnose, how to solve the problem?

- is QCD at low temperatures an example for that?

Overlap problem

Histogram of weights
Relative to the largest weight in ensemble

Average becomes dominated by very few configurations

Sign problem

Sign problem gets hard around $\mu / T \approx 1-1.5$

$$
\langle\exp (2 i \varphi)\rangle=\left|\frac{\operatorname{det} M(\mu)}{\operatorname{det} M(-\mu)}\right|
$$

Spectrum of the Dirac Operator $\quad N_{F}=4$ staggered

Massless staggered operator at $\mu=0$ is antihermitian

Spectrum of the Dirac Operator

$N_{F}=4$ staggered

