Statistical uncertainties on the NN interaction and light nuclei

FAIRNESS2016 Workshop

<u>Rodrigo Navarro Perez (LLNL)</u> Jose Enrique Amaro Soriano (UGR) Enrique Ruiz Arriola (UGR)

Garmisch-Partenkrichen, February 14th-19th 2016

LLNL-PRES-682501

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

- More than 7800 elastic scattering data since the 1950's
- Several potentials and PWA
 - Hamada Johnston, Yale, Paris, Bonn, Nijmegen, Argonne V18, ...
- χ^2 /d.o.f. \approx 1 possible by 1993

Motivation

The NN interaction has no unique representation

- Different phenomenological potentials
 - Fitted to experimental scattering data
 - − High accuracy χ^2 /d.o.f. ≈ 1
 - Dispersion in Phaseshifts
 - OPE for the long range interaction
 - ~ 40 parameters for the short and intermediate range
- Repulsive core in most of them
 - Complicates nuclear structure
- Statistical uncertainties are recent

Motivation Chiral Potentials

pp PWA by the Nijmegen group

```
[Rentmeester et al, Phys. Rev. Lett. 82 (1999), 4992]
```

- Improvement in the χ^2 value compared to OPE only
- Accurate N3LO chiral potential up to 290 MeV

[Entem & Machleidt, Phys. Rev. C68 (2003), 041001]

Optimized NNLO (sim, sat)

[Carlson et al, arXiv:1506.02466]

■ TPE including ∆ resonances up to 300 MeV

[Piarulli et al, Phys. Rev. C91 (2015) 024003]

Reproduction of statistical uncertainties is still in progress

Motivation

Sources of uncertainty

- Numerical (Implementation)
 - Inexact solution method
 - Inherent to any numerical calculation
- Systematic (Model dependence)
 - Any model makes assumptions
 - Different representations for the NN interaction
- Statistical (Fitting bias)
 - Statistical fluctuations in any measurement
 - Uncertainty in data \rightarrow Uncertainty in parameters

Assuming independence among them $(\Delta F)^2 = (\Delta F^{\text{num}})^2 + (\Delta F^{\text{sys}})^2 + (\Delta F^{\text{stat}})^2$

Anatomy of phenomenological potentials

fitted to the Granada database

Short and Intermediate range

- Delta Shells
 - Coarse grained
 - Simplified calculations
 - High momentum components
- Sum of Gaussian functions
 - Smooth and soft
 - Nuclear structure calculations
 - Not as fast

Long range

- Electromagnetic contributions
 - Small but crucial
- One pion exchange
 Proper analytic behavior
- Optional
 - Two pion exchange
 - Δ degree of freedom
 - Born approximation

Six different phenomenological potentials

Granada database

🄀 🐻 🖻 🚓 🚭	fill 💽 9:29
Search NN provider Start	
Channel: pp 📀	
Observable: all	
Energy (MeV): 0 < E < 350	
Write to file: ppdata.txt	
Output format: separate data	
Order by: energy	
Minclude star (*) data	
Minclude excluded data	

- NN scattering data from 1950 to 2013
 - http://nn-online.org/
 - http://gwdac.phys.gwu.edu/
 - NN Provider for Android
 - Google play store

[Amaro, RNP, Ruiz-Arriola]

- http://www.ugr.es/~amaro/nndatabase/
- 2868 pp and 4991 np data

Fitting NN scattering observables Selection of data

- Direct fits to all data NEVER give χ^2 /d.o.f. ≈ 1
 - Restrictive model ? → Improve model
 - − Mutually incompatible data → Reject incompatible data
- np $d\sigma/d\Omega$ at 162 MeV
- Statistical and systematic errors may be over or underestimated
- 3σ criterion
 - Fit all data (χ^2 /d.o.f. > 1)
 - Remove sets with improbably high or low χ²
 - Refit parameters

Fitting NN scattering observables Recovering data

- Mutually incompatible data
 - Which experiment is correct?
 - Is any of the two correct?
 - Maximization of experimental consensus
- Exclude data sets inconsistent with the rest of the database
 - Fit to all data (χ^2 /d.o.f. > 1)
 - Remove data sets with improbably high or low χ^2 (3 σ criterion)
 - Refit parameters
 - Re-apply 3σ criterion to all data

Fitting NN scattering observables Recovering data

300 recovered data with Granada procedure (consistent database)

Comparing with Potentials and Experimental data

 χ^2 /d.o.f. = 1.06 with N = 2747 |_{pp} + 3691 |_{np}

[RNP, Amaro & Ruiz-Arriola. Phys.Rev.C88 (2013) 024002]

Chiral Two Pion Exchange

- Can χTPE interaction describe the same data
 - OPE, TPE(NLO) and TPE(NNLO)
 - Different cut radious rc = 3.0, 2.4, 1.8 fm
- Fitting the consistent database
 - No further data is excluded or added

<i>r_c</i> [fm]	1.8 Np - χ²/d.o.f.	2.4 Np - χ²/d.o.f.	3.0 Np - χ²/d.o.f.
OPE	31 - 1.37	39 - 1.09	46 - 1.06
TPE (NLO)	31 - 1.26	38 - 1.08	46 - 1.06
TPE (NNLO)	30+3 - 1.10	38+3 - 1.08	46+3 - 1.06

[RNP, Amaro & Ruiz Arriola. Phys.Rev.C89 (2014) 024004]

Chiral Two Pion Exchange Phase-shifts

Discrepancies in phase-shifts account for systematic uncertainties

Chiral Two Pion Exchange Phase-shifts

Lowering the Energy fitting range from 350 to 125 MeV

20+3 parameters with χ^2 /d.o.f. = 1.02

Significant increase of statistical uncertainties

[RNP, Amaro & Ruiz-Arriola Phys.Rev.C91 (2015) 054002]

Determination of Chiral LEC's

	Source	<i>c</i> ¹ GeV ⁻¹	c ₃ GeV⁻¹	c₄ GeV⁻¹
RNP, Amaro and Ruiz-Arriola 350	NN	-0.42±1.08	-4.66±0.60	4.32±0.17
RNP, Amaro and Ruiz-Arriola 125	NN	-0.27±2.87	-5.77±1.58	4.24±0.73
Nijmegen	рр	-0.76±0.07	-5.08±0.28	4.70±0.70
Entem & Machleidt	NN	-0.81	-3.40	3.40
Ekström et. al.	NN	-0.92	-3.89	4.31
Buetikker & Meissner	πN	-0.81±0.15	-4.69±1.34	3.40±0.04
$\begin{array}{c} -2 \\ -2 \\ -4 \\ -4 \\ -5 \\ -6 \\ -6 \\ -10 \\ $	-4 -2 0 2 c_1 [GeV ⁻¹]	$ \begin{array}{c} 6.5 \\ 6 \\ 5.5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	1-10 - 9 - 8 - 7 - 6 - 5 $c_3 [\text{GeV}^{-1}]$	-4 -3 -2 -1

Different potentials fitted to the same database

Potential	T _{LAB}	N _{Data}	N _{parameters}	χ²/d.o.f.	
DS - OPE	350	6713	46	1.05	
DS - χTPE	350	6712	33	1.08	
DS - ΔBorn	350	6719	31	1.06	
Gauss - OPE	350	6712	42	1.07	
Gauss - χTPE	350	6712	31	1.09	
Gauss - ∆Born	350	6712	30	1.14	

[RNP, Amaro & Ruiz Arriola. ArXiv:1410.8097v3]

Predictions are different Source of *systematic* uncertainties

Testing the normality of residuals

- Experiments by counting events → Poissonian statistics
- Large number of events \rightarrow Normal statistics
- Crucial assumption

$$R_{i} = \frac{O_{i}^{\exp} - O_{i}^{theor}(p_{1}, p_{2}, \dots, p_{P})}{\Delta O_{i}^{\exp}}$$

follows the standard normal distribution

- $\chi^2/d.o.f. = 1 \pm (2/d.o.f.)^{1/2}$
- Can be different from N(0,1), but it has to be known

Can only be checked a posteriori

Testing the normality of residuals

- Empirical distribution P_{emp}
- Normal distribution N(0,1)
- Finite size fluctuations
- Discrepancies between P_{emp} and N(0,1)
- How large is too large?
- Normality tests
 - Quantifying discrepancies
 - Test statistic T
 - Critical values

Tail Sensitive test

- Quantitative test with a graphical representation
- Quantile-Quantile plot
 - Theoretical quantiles

$$\frac{i}{N+1} = \int_{-\infty}^{x_i^m} N(t) dt$$

Empirical Quantiles

$$x_1^{emp} < x_2^{emp} < \ldots < x_N^{emp}$$

- Mapping (x_i^{th}, x_i^{emp})
- $\lim_{N \to \infty} (x_i^{emp} x_i^{th}) = 0$
- Confidence bands

Testing the normality of residuals

Six statistically equivalent representations of the NN interaction Their discrepancies won't come from the data

NN Systematic Uncertainty

- Data is unevenly distributed on the $(T_{LAB}, \Theta_{c.m.})$
- Same description in probed regions
- Incompatible predictions in unexplored areas
- A uniform experimental exploration is necessary but unlikely

Reproducing NN uncertainties from NN data

- Propagation with covariance matrix
 - Requires to calculate derivatives
- Monte-Carlo family of potentials
- Bootstrap the data
 - Simulate data ~ $N(O_i, \Delta o_i)$
 - Refit parameters
- Replicate parameters correlations
 - Simulate parameters
 - Faster, but real distribution may differ

Reproducing NN uncertainties from NN data

Lawrence Livermore National Laboratory

Triton Binding Energy

Hyperspherical Adiabatic Expansion Method

- Monte-Carlo simulation of N = 250 potentials
- Error estimates in nuclear structure calculations
- $\Delta B_t^{\text{stat}} = 15(1) \text{ KeV}, \Delta B_t^{\text{num}} = 1 \text{ KeV}$

[RNP, Garrido, Amaro & Ruiz-Arriola. Phys.Rev.C99 (2014) 047001]

- N ~ 30 gives a fairly good estimate
- Reduction of target accuracy is possible
- ΔB_t^{sys} is even larger

³H and ⁴He Binding Energy

No Core Full Configuration Method

- Sum of Gaussians potential
- 33 Monte-Carlo potentials
- $\Delta(^{3}H)_{t}^{\text{stat}} = 15 \text{ KeV}, \Delta(^{4}He)_{t}^{\text{stat}} = 55 \text{ KeV}$

[RNP, Amaro, Ruiz-Arriola, Maris & Vary. Phys.Rev.C92 (2015) 064003]

Tjon Line correlation

Empirical correlation between binding energy calculations

Similarity Renormalization Group: $B_a = 4B_t + 3B_d$

[Ruiz-Arriola, Szpiegel & Timoteo. Few Body Syst. 55 (2014) 971-975]

Tjon Line Correlation

Numerical accuracy.

- Preliminary Results
- $\Delta({}^{3}H)_{t}^{num} = 1 \text{ KeV}, \Delta({}^{4}He)_{t}^{num} = 20 \text{ KeV}$

4-Body forces are masked by the numerical noise in 3 and 4 body calculations

- Determination of the NN interaction is not unique
- Fit to NN scattering data (on a desktop computer)
 - Good description of scattering observables (over 6400)
 - 6 different and statistically equivalent interactions
- Normality of residuals is crucial for a reliable error propagation
- Error propagation into bound states
 - Monte Carlo Simulation
 - $3H: \Delta B^{stat} = 15 \text{ KeV}$
 - 4He: ΔB^{stat} = 55 KeV

Numerical accuracy in nuclear structure can be tailored to statistical and systematic uncertainties

