Charm physics and XYZ states at BESIII

Evgeny BOGER JINR Dubna On behalf of BESIII collaboration

FAIRNESS2016 Feb. 15, 2016

₿€SⅢ

Outline

- BESIII experiment
- Charm physics
- Recent XYZ results

BEPC II

Beam energy: **1 - 2.3 GeV** Achieved luminocity: $8 \times 10^{32} cm^{-2} s^{-1}$ Beam current: **0.91A**

Charm + XYZ at BES-III

BESIII Detector

1T superconducting magnet

EMC:

- CsI crystals
- Energy resolution: 2.5%@1GeV
- Spatial resulution: 6mm

MDC:

- Spatial resulution: σ_{xv} = 120μm
- Momentum resolution: 0.5%@1GeV
- dE/dx resolution: 6%

TOF

- Two layers of scintillator
- Time resolution:
 90 ps (barel), 120 ps (endcaps)

Muon ID

• 8 layers of RPC inside the yoke (9 in endcaps)

Charm + XYZ at BES-III

BESIII Data Sample

- Data taking since 2008
- World largest sample in $e^+e^- \rightarrow : J/\psi, \psi(2S), \psi(3770), Y(4260)$

5

Charm + XYZ at BES-III

Charm physics at BESIII: Motivation

- Unitarity test of CKM matrix: measuring $|V_{\rm cs}|$ and $|V_{\rm cd}|$
- New Physics: finding evidence of CP violation, rare decays, significant deviations from CKM unitarity or from LQCD calculations
- Providing inputs for b-physics

Charm physics: data samples

2.93 fb^{-1} @ 3.773 GeV for $D^{0} \overline{D^{0}}$, $D^{+} D^{-1}$

 $0.48 \, fb^{-1}$ @ $4.009 \, GeV \, for \, D_s^+ D_s^-$

 $0.57 \, fb^{-1}$ @ $4.599 \, GeV$ for $\Lambda_c^+ \Lambda_c^-$

Analysis Technique

- Pure DD final state, no additional hadrons
- «Tag» D-meson is fully reconstructed
- Signal is searched at the recoiling side

- Tag selection based on two variables: $\Delta E = E_D - E_{beam}$ $m_{BC} = \sqrt{E_{beam}^2 - |\vec{p_D}|}$
- Tag yeild is obtained by fitting m_{BC}

Analysis of $D^+ \rightarrow K^- \pi^+ e^+ v_{\rho}$

• Branching fractions

 $\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e) = (3.71 \pm 0.03 \pm 0.08)\%,$ $\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{[0.8,1]} = (3.33 \pm 0.03 \pm 0.07)\%$

- Amplitude analysis
 - $\begin{array}{c|c} & \mbox{Fitted fractions (S+P)} & \mbox{BESIII preliminary} \\ \hline f_S(\%) & 6.05 \pm 0.22 \pm 0.18 \\ f_{\bar{K}^*(892)^0}(\%) & 93.93 \pm 0.22 \pm 0.18 \end{array}$
- S-wave phase measurement
 - Consistent with LASS parameterization
- Model-independent helicity basis FF study
 - Consistent with the PWA solution and CLEO-c results

arxiv:1512.08627

 $N_{sig} = 18262$

background level: 0.7%

Cont.

9

PWA of $D^+ \rightarrow K^- \pi^+ e^+ v_{\rho}$

$D^+ \rightarrow K^- \pi^+ e^+ v_e^- S$ -wave phase

Model-independent measurement of BESIII are consistent with its result from amplitude analysis within 1σ .

Model-Independent Measurement of Form Factors

- Events located in the K^{*} window [0.8,1] GeV/c², are used to measure the form factors by a Projective Weighting Technique [Phys. Rev. D 81, 112001 (2010)].
- Signal is assumed to be composed of K* and a non-resonant S-wave.
- Helicity basis form factors include:
 - P-wave related: H_±(q²⁾
 - S-wave related: h₀(q²)
- Five weighted q² histograms are built.
 Weight is assigned to each event based on kinematic variables.
- Form factors are independently computed in each bin.
- The model-independent measurements are generally consistent with CLEO-c and with SPD-model results from amplitude analysis

Red dots : BESIII model-independent measurement Black dots : CLEO model-independent measurement Blue Line : BESIII result from amplitude analysis (it's **not** the fit!)

Charm + XYZ at BES-III

13

Study of
$$D^+ \rightarrow \omega e^+ v_e$$
 and search for $D^+ \rightarrow \phi e^+ v_e$

Observation of $D^+ \rightarrow \omega \pi^+$ and evidence for $D^0 \rightarrow \omega \pi^0$

Mode	This work	Previous measurements		
$D^+ \to \omega \pi^+$	$(2.79 \pm 0.57 \pm 0.16) \times 10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.		
$D^0 ightarrow \omega \pi^0$	$(1.17 \pm 0.34 \pm 0.07) \times 10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.		
$D^+ \to \eta \pi^+$	$(3.07 \pm 0.22 \pm 0.13) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$		
$D^0 \to \eta \pi^0$	$(0.65 \pm 0.09 \pm 0.04) \times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$		
		BESIII preliminary		

Absolute BF for $\Lambda^+_{c} \rightarrow \Lambda e^+ v_{e}$

 $BF(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e)$

Theoretical predictions: 1.4% to 9.2% Previous indirect measurements: $(2.9\pm0.5)\%$

First direct measurement $BF(\Lambda_c^+ \rightarrow \Lambda e^+ v_e) = (3.63 \pm 0.38 \pm 0.20)\%$

PRL115(2015)2218056

XYZ States

"XYZ" states:

- Charmonium (cc) in the final state
- Do not fit into the conventional quark model of charmonium

Exotic Hadrons

- Conventional hadrons: 2 or 3 quarks
- QCD doesn't forbid exotic hadrons:
 - Glueball (no quarks)
 - Hybrid (quarks + excited gluon)
 - Multiquark (N > 3)
 - Hardon molecule (bound state of hadrons)

BESIII Data Sets

```
2011: ~482 pb<sup>-1</sup> at 4.01 GeV
2013: ~1054 pb<sup>-1</sup> at 4.23 GeV
~806 pb<sup>-1</sup> at 4.26 GeV
~523 pb<sup>-1</sup> at 4.36 GeV
~50 pb<sup>-1</sup> at 3.81, 3.90, 4.09, 4.19, 4.21, 4.22, 4.245, 4.31, 4.39, 4.42 GeV
2014: ~993 pb<sup>-1</sup> at 4.42 GeV
~42 pb<sup>-1</sup> at 4.575 GeV
~100 pb<sup>-1</sup> at 4.47 GeV
~506 pb<sup>-1</sup> at 4.6 GeV
```

Z_c states at BESIII

Charged charmonium-like state

- M = (3899.0 ± 3.6 ± 4.9) MeV/c²
- Γ = (46 ± 10 ± 20) MeV/c²
- Significance > 8σ

PRL110, 252001[2013]

Isospin triplet

Charm + XYZ at BES-III

- M = 3894.8 ± 2.3 ± 3.2 MeV/c²
- Γ = 29.6 ± 8.2 ± 8.2 MeV/c²
- Significance = 10.4σ

PRL 115, 112003 (2015)

Z_c states at BESIII

Z_c states at BESIII

4.05 4.1 4.15 4.2

M^{recoil} (GeV/c²)

3.9 3.95

PRL 113, 212002(2014)

$$Z_c(4020)^+ \qquad e^+e^- \to \pi^+\pi^-h_c$$

- M = (4022.9 ± 0.8 ± 2.7) MeV/c²
- Γ = (7.9 ± 2.7 ± 2.6) MeV/c²
- Significance > 8.9σ

Isospin triplet

 $Z_{c}(4020)^{0}$ e^{+}

$$e^{-} \rightarrow \pi^0 \pi^0 h_c$$

- M = 4023.9 ± 2.2 ± 3.8 MeV/c2
- Γ fixed to Z_c(4020)⁺
- Significance: 5σ

Charm + XYZ at BES-III

 Z_{a} states at BESIII

In $e^+e^- \rightarrow \pi^+(D^*D^{\overline{*}})^-$

 $Z_{c}(4025)^{+}$

- M = (4026.3 ± 2.6 ± 3.7) MeV/c²
- $\Gamma = (24.8 \pm 5.6 \pm 7.7) \text{ MeV/c}^2$
- Significance > 10σ

 $Z_{c}(4025)^{0}$

Isospin triplet

- M = (4025.5^{+2.0}₋₄₇ ± 3.1) MeV/c²
- Γ = (23.0 ± 6.0 ± 1.0) MeV/c²
- Significance > 5.9σ

Z_c states at BESIII: Summary

State	Mass (MeV/c²)	Width (MeV)	Decay	Process	[Ref]
Z _c (3900)±	3899.0±3.6±4.9	46±10±20	$\pi^{\pm}J/\psi$	$e^+e^- ightarrow \pi^+\pi^- J/\psi$	1*
Z _c (3900) ⁰	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- ightarrow \pi^0\pi^0 J/\psi$	2*
Z _c (3885) [±]	3883.9±1.5±4.2 Single D tag	24.8±3.3±11.0 Single D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$	3*
	3881.7±1.6±2.1 Double D tag	26.6±2.0±2.3 Double D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- ightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$	4*
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- ightarrow (D\overline{D}^*)^0 \pi^0$	5*
$Z_{c}(4020)^{\pm}$	4022.9±0.8±2.7	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_{c}$	$e^+e^- ightarrow \pi^+\pi^-h_c$	6*
Z _c (4020) ⁰	4023.9±2.2±3.8	fixed	$\pi^0 h_c$	$e^+e^- ightarrow \pi^0\pi^0h_c$	7*
Z _c (4025)±	4026.3±2.6±3.7	24.8±5.6±7.7	$\boldsymbol{D}^*\overline{\boldsymbol{D}}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^{\pm}\pi^{\mp}$	8*
Z _c (4025) ^o	4025.5 ^{+2,0} _{-4.7} ±3.1	23.0±6.0±1.0	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^0\pi^0$	9*

References:

1*: PRL 110, 252001; 2*: PRL 115, 112003; 3*: PRL 112, 022001; 4*: PRD 92, 092006; 5*: arXiv:1509.05620; 6*: PRL 110, 252001; 7*: PRL 113, 212002; 8*: PRL 112, 132001; 9*: PRL 115, 182002

Table by Guangshun Huang «Overview of the BESIII Experiment» 4th LNF Workshop on Cylindrical GEM Detectors

Charm + XYZ at BES-III

X States at BESIII

Y States

Summary

- Charm physics
 - Semileptonic analyses (hadronic FF and decay constant)
 - $D^+ \rightarrow K^- \pi^+ e^+ v_{e,} D^0 \rightarrow K^- / \pi^- e^+ v_{e,} D^+ \rightarrow \omega e^+ v_e$
- Recent progress in *XYZ*:
 - Neutral *Z_c* partners are found:
 - $Z_c(3900)^0$, $Z_c(3885)^0$, $Z_c(4020)^0$, $Z_c(4025)^0$
 - $\psi(1^{3}D_{2})$ (X(3823)) is observed
 - Y(4230)
- BESIII continues to take data
 - More interesting results are expected soon