Charm physics and XYZ states at BESIII

Evgeny BOGER
JINR Dubna
On behalf of BESIII collaboration
FAIRNESS2016
Feb. 15, 2016

Outline

- BESIII experiment
- Charm physics
- Recent XYZ results

BEPC II

Beam energy: 1-2.3 GeV Achieved luminocity: $8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ Beam current: 0.91A

BESIII Detector

1T superconducting magnet

EMC:

- Csl crystals
- Energy resolution: 2.5\%@1GeV
- Spatial resulution: 6mm

MDC:

- Spatial resulution: $\boldsymbol{\sigma}_{\mathrm{xy}}=\mathbf{1 2 0} \mu \mathrm{m}$
- Momentum resolution: 0.5\%@1GeV
- dE/dx resolution: 6\%

TOF

- Two layers of scintillator
- Time resolution:

90 ps (barel), 120 ps (endcaps)

Muon ID

- 8 layers of RPC inside the yoke (9 in endcaps)

BESIII Data Sample

- Data taking since 2008
- World largest sample in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \Psi, \Psi(2 \mathrm{~S}), \Psi(3770), \mathrm{Y}(4260)$

Charm physics at BESIII: Motivation

- Unitarity test of CKM matrix: measuring $\left|\mathrm{V}_{\text {cs }}\right|$ and $\left|V_{\text {cd }}\right|$
- LQCD calibration: $\mathrm{f}_{\mathrm{D} \rightarrow \mathrm{K} / \pi}\left(\mathrm{q}^{2}\right)$ and other $\mathrm{FFs}, \mathrm{f}_{\mathrm{D}(\mathrm{s})+}$ decay constant
- New Physics: finding evidence of CP violation, гаге decays, significant deviations from CKM unitarity or from LQCD calculations
- Providing inputs for b-physics

Charm physics: data samples

$2.93 \mathrm{fb}^{-1} @ 3.773 \mathrm{GeV}$ for $D^{0} \overline{D^{0}}, D^{+} D^{-}$
$0.48 \mathrm{fb}^{-1} @ 4.009 \mathrm{GeV}$ for $D_{s}^{+} D_{s}^{-}$
$0.57 \mathrm{fb}^{-1} @ 4.599 \mathrm{GeV}$ for $\Lambda_{c}^{+} \Lambda_{c}^{-}$

Analysis Technique

- Pure DD final state, no additional hadrons

```
Example: \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(3770) \rightarrow \mathrm{D} \overline{\mathrm{D}}\)
```

- «Tag» D-meson is fully reconstructed
- Signal is searched at the recoiling side

- Tag selection based on two variables: $\quad \Delta E=E_{D}-E_{\text {bean }} \quad m_{B C}=\sqrt{E_{\text {bem }}^{2}-\left|\overrightarrow{p_{D}}\right|}$
- Tag yeild is obtained by fitting m_{BC}

Analysis of $D^{+} \rightarrow K^{-} \pi^{+} e^{+} v^{\circ}$

- Branching fractions

BESIII preliminary

$$
\begin{aligned}
\mathcal{B}\left(D^{+} \rightarrow K^{-} \pi^{+} e^{+} \nu_{e}\right) & =(3.71 \pm 0.03 \pm 0.08) \% \\
\mathcal{B}\left(D^{+} \rightarrow K^{-} \pi^{+} e^{+} \nu_{e}\right)_{[0.8,1]} & =(3.33 \pm 0.03 \pm 0.07) \%
\end{aligned}
$$

- Amplitude analysis
- Fitted fractions (S+P)

BESIII preliminary

$$
\begin{array}{lc}
f_{S}(\%) & 6.05 \pm 0.22 \pm 0.18 \\
f_{\bar{K}^{*}(892)^{0}}(\%) & 93.93 \pm 0.22 \pm 0.18
\end{array}
$$

- S-wave phase measurement
- Consistent with LASS parameterization
- Model-independent helicity basis FF study
- Consistent with the PWA solution and CLEO-c results

PWA of $D^{+} \rightarrow K \cdot \pi^{+} e^{+} v$

Variable	$S+P$
$r_{S}(\mathrm{GeV})^{-1}$	$-11.57 \pm 0.58 \pm 0.46$
$r_{S}^{(1)}$	$0.08 \pm 0.05 \pm 0.05$
$a_{\mathrm{S}, \mathrm{BG}}^{1 / 2}(\mathrm{GeV} / c)^{-1}$	$1.94 \pm 0.21 \pm 0.29$
$b_{\mathrm{S}, \mathrm{BG}}^{1 / 2}(\mathrm{GeV} / c)^{-1} \quad \geqslant$	$-0.81 \pm 0.82 \pm 1.24$
$m_{\bar{K}^{*}(892)^{0}}\left(\mathrm{MeV} / c^{2}\right) \stackrel{\text { ® }}{ }{ }^{\text {¢ }}$	$894.60 \pm 0.25 \pm 0.08$
$\Gamma_{\bar{K}^{*}(892)^{0}}^{0}$	$46.42 \pm 0.56 \pm 0.15$
$\left(\mathrm{MeV} / c^{2}\right)$	
$r_{\mathrm{BW}}(\mathrm{GeV} / c)^{-1} \stackrel{ }{\text { - }}$	$3.07 \pm 0.26 \pm 0.11$
$m_{V}\left(\mathrm{GeV} / c^{2}\right)$ 山	$1.811_{-0.17}^{+0.25} \pm 0.02$
$m_{A}\left(\mathrm{GeV} / c^{2}\right)$	$2.611_{-0.17}^{+0.22} \pm 0.03$
r_{V}	$1.411 \pm 0.058 \pm 0.007$
r_{2}	$0.788 \pm 0.042 \pm 0.008$

Projections of data and PWA solution MC (S+P)

$f_{S}(\%)$
$6.05 \pm 0.22 \pm 0.18$
First measuremei $f_{\bar{K}^{*}(892)^{0}}(\%) \quad 93.93 \pm 0.22 \pm 0.18$ of SPD V pole mass

$D^{+} \rightarrow K-\pi^{+} e^{+} v_{e} S$-wave phase

S-wave phase δ_{s} is independently fitted in $12 \mathrm{~m}_{\mathrm{Kп}}$ bins

Blue dots: BESIII model-independent measurement

$$
\mathrm{m}_{\mathrm{K} \pi}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)
$$

Red and dotted lines: predicted by fit based on LASS parameterization Green dots: BABAR model-independent measurement with S+D+P

Model-independent measurement of BESIII are consistent with its result from amplitude analysis within 1σ.

Model-Independent Measurement of Form Factors

- Events located in the K^{*} window $[0.8,1]$ $\mathrm{GeV} / \mathrm{c}^{2}$, are used to measure the form factors by a Projective Weighting Technique [Phys. Rev. D 81, 112001 (2010)].
- Signal is assumed to be composed of K* and a non-resonant S-wave.
- Helicity basis form factors include:
- P-wave related: $\mathrm{H}_{ \pm}\left(\mathrm{q}^{2)}\right.$
- S-wave related: $h_{0}\left(q^{2}\right)$
- Five weighted q^{2} histograms are built. Weight is assigned to each event based on kinematic variables.
- Form factors are independently computed in each bin.
- The model-independent measurements are generally consistent with CLEO-c and with SPD-model results from amplitude analysis

Red dots : BESIII model-independent measurement Black dots : CLEO model-independent measurement Blue Line : BESIII result from amplitude analysis (it's not the fit!)

Study of $D^{0} \rightarrow K^{-} / \pi e^{+} v_{e}$

Measure $\left|\mathrm{V}_{\mathrm{cs}(\mathrm{d})}\right| \times \mathrm{f}_{+}^{\mathrm{K}(\pi)}$
PRD92 (2015) 072012

$$
\mathcal{B}\left(D^{0} \rightarrow K^{-} e^{+} \nu_{e}\right)=(3.505 \pm 0.014 \pm 0.033) \%
$$

$$
\mathcal{B}\left(D^{0} \rightarrow \pi^{-} e^{+} \nu_{e}\right)=(0.295 \pm 0.004 \pm 0.003) \%,
$$

Study of $D^{+} \rightarrow \omega e^{+} v_{e}$ and search for $D^{+} \rightarrow \phi e^{+} v_{e}$

First $D^{+} \rightarrow \omega e^{+} v_{e}$ form factor measurement PRD 92,071101(R) (2015)

Form factor ratios:
$r_{V}=V(0) / A_{1}(0)=1.24 \pm 0.09 \pm 0.06$
$r_{2}=A_{2}(0) / A_{1}(0)=1.06 \pm 0.15 \pm 0.05$

Branching ratios:

Mode	This work	Previous
$\omega e^{+} \nu_{e}$	$(1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$	$(1.82 \pm 0.18 \pm 0.07) \times 10^{-3}$
$\phi e^{+} \nu_{e}$	$<1.3 \times 10^{-5}(@ 90 \%$ C.L. $)$	$<9.0 \times 10^{-5}(@ 90 \%$ C.L. $)$

Charm + XYZ at BES-III

Observation of $D^{+} \rightarrow \omega \pi^{+}$and evidence for $D^{0} \rightarrow \omega \pi^{0}$

Mode	This work	Previous measurements
$D^{+} \rightarrow \omega \pi^{+}$	$(2.79 \pm 0.57 \pm 0.16) \times 10^{-4}$	$<3.4 \times 10^{-4}$ at 90% C.L.
$D^{0} \rightarrow \omega \pi^{0}$	$(1.17 \pm 0.34 \pm 0.07) \times 10^{-4}$	$<2.6 \times 10^{-4}$ at 90% C.L.
$D^{+} \rightarrow \eta \pi^{+}$	$(3.07 \pm 0.22 \pm 0.13) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^{0} \rightarrow \eta \pi^{0}$	$(0.65 \pm 0.09 \pm 0.04) \times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$

Absolute BF for $\Lambda^{+}{ }_{c} \rightarrow \Lambda e^{+} v_{e}$

Theoretical predictions: 1.4\% to 9.2\%
Previous indirect measurements: (2.9 ± 0.5) \%
First direct measurement $B F\left(\Lambda_{c}^{+} \rightarrow \Lambda e^{+} v_{e}\right)=(3.63 \pm 0.38 \pm 0.20) \%$

XYZ States

"XYZ" states:

- Charmonium (cc $)$ in the final state
- Do not fit into the conventional quark model of charmonium

Exotic Hadrons

- Conventional hadrons: 2 or 3 quarks
- QCD doesn't forbid exotic hadrons:
- Glueball (no quarks)
- Hybrid (quarks + excited gluon)
- Multiquark ($\mathrm{N}>3$)
- Hardon molecule (bound state of hadrons)

BESIII Data Sets

```
2011: ~482 pb-1 at 4.01 GeV
2013: ~ 1054 pb-1 at 4.23 GeV
    ~806 pb-1 at 4.26 GeV
    ~23 pb-1 at 4.36 GeV
    ~0 pb-1 at 3.81, 3.90, 4.09, 4.19, 4.21,
        4.22, 4.245, 4.31, 4.39, 4.42 GeV
2014: ~993 pb-1 at 4.42 GeV
    \sim 4 2 \mathrm { pb } ^ { - 1 } \text { at 4.575 GeV}
    ~100 pb-1 at 4.47 GeV
    ~506 pb-1 at 4.6 GeV
```


Z_{c} states at BESIII

$Z_{c}(3900)^{+}$

Charged charmonium-like state

- $M=(3899.0 \pm 3.6 \pm 4.9) \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=(46 \pm 10 \pm 20) \mathrm{MeV} / \mathrm{c}^{2}$
- Significance $>8 \sigma$

Isospin triplet

Neutral partner is found in $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$

- $\mathrm{M}=3894.8 \pm 2.3 \pm 3.2 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=29.6 \pm 8.2 \pm 8.2 \mathrm{MeV} / \mathrm{c}^{2}$
- Significance $=10.4 \sigma$

Z_{c} states at BESIII

PRD 92, 092006 (2015)

$Z_{c}(3885)^{+}$
Found in $e^{+} e^{-} \rightarrow \pi^{+}\left(D \overline{D^{*}}\right)^{-}$@ 4.26 GeV (ST) confirmed @ 4.23, 4.26 GeV (DT)

- $M=3881.7 \pm 1.6 \pm 2.1 \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=26.6 \pm 2.0 \pm 2.3 \mathrm{MeV} / \mathrm{c}^{2}$
- Significance > 10σ
- Angular distribution consistent with $J^{\mathrm{P}}=1^{+}$

Isospin triplet

$$
\begin{aligned}
& Z_{c}(3885)^{0} \quad e^{+} e^{-} \rightarrow \pi^{0}\left(D \bar{D}^{*}\right)^{0} \\
& \text { - } \mathrm{M}=3885.7^{+4.3}{ }^{-5.7} \pm 8.4 \mathrm{MeV} / \mathrm{c}^{2} \\
& \text { - } \Gamma=35^{+11}{ }_{-12} \pm 15 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

- Significance $>12 \sigma$

Z_{c} states at BESIII

PRL 111, 242001(2013) ${ }^{\text {M }}{ }^{\left(\mathrm{GeV} / \mathrm{c}^{2}\right)}$

$$
Z_{c}(4020)^{+} \quad e^{+} e^{-} \rightarrow \pi^{+} \pi h_{c}
$$

- $M=(4022.9 \pm 0.8 \pm 2.7) \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=(7.9 \pm 2.7 \pm 2.6) \mathrm{MeV} / \mathrm{c}^{2}$
- Significance > 8.9б

Isospin triplet

$$
Z_{c}(4020)^{0} \quad e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} h_{c}
$$

- $M=4023.9 \pm 2.2 \pm 3.8 \mathrm{MeV} / \mathrm{c} 2$
- Γ fixed to $Z_{c}(4020)^{+}$
- Significance: 5σ

Z_{c} states at BESIII

$\ln e^{+} e^{-} \rightarrow \pi^{+}\left(D^{*} \bar{D}^{*}\right)^{-}$

$$
Z_{c}(4025)^{+}
$$

- $M=(4026.3 \pm 2.6 \pm 3.7) \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=(24.8 \pm 5.6 \pm 7.7) \mathrm{MeV} / \mathrm{c}^{2}$
- Significance > 10

$$
Z_{c}(4025)^{0}
$$

Isospin triplet

- $\mathrm{M}=\left(4025.5^{+2.0}{ }_{-4.7} \pm 3.1\right) \mathrm{MeV} / \mathrm{c}^{2}$
- $\Gamma=(23.0 \pm 6.0 \pm 1.0) \mathrm{MeV} / \mathrm{c}^{2}$
- Significance > 5.9 σ

Z_{c} states at BESIII: Summary

State	Mass (MeV/c²)	Width (MeV)	Decay	Process	[Ref]
$\mathrm{Z}_{\mathrm{c}}(3900)^{ \pm}$	$3899.0 \pm 3.6 \pm 4.9$	$46 \pm 10 \pm 20$	$\boldsymbol{\pi}^{ \pm} \boldsymbol{J} / \boldsymbol{\psi}$	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \boldsymbol{J} / \boldsymbol{\psi}$	1*
$\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})^{0}$	$3894.8 \pm 2.3 \pm 2.7$	$29.6 \pm 8.2 \pm 8.2$	$\pi^{0} J / \psi$	$e^{+} e^{-} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{\mathbf{0}} \mathrm{J} / \boldsymbol{\psi}$	2*
$\mathrm{Z}_{\mathrm{c}}(3885)^{ \pm}$	$3883.9 \pm 1.5 \pm 4.2$ Single D tag	$24.8 \pm 3.3 \pm 11.0$ Single D tag	$\left(\boldsymbol{D} \overline{\boldsymbol{D}}^{*}\right)^{ \pm}$	$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow\left(\boldsymbol{D} \overline{\boldsymbol{D}}^{*}\right)^{ \pm} \boldsymbol{\pi}^{\mp}$	3*
	$3881.7 \pm 1.6 \pm 2.1$ Double D tag	$26.6 \pm 2.0 \pm 2.3$ Double D tag	$\left(\boldsymbol{D} \overline{\boldsymbol{D}}^{*}\right)^{ \pm}$	$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow\left(\boldsymbol{D} \overline{\boldsymbol{D}}^{*}\right)^{ \pm} \boldsymbol{\pi}^{\mp}$	4*
$\mathrm{Z}_{\mathrm{c}}(3885)^{0}$	$3885.7_{-5.7}^{+4.3} \pm 8.4$	$35_{-12}^{+11} \pm 15$	$\left(D \bar{D}^{*}\right)^{0}$	$e^{+} e^{-} \rightarrow\left(D \bar{D}^{*}\right)^{0} \boldsymbol{\pi}^{0}$	5*
$\mathrm{Z}_{\mathrm{c}}(\mathbf{4 0 2 0})^{ \pm}$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	$\boldsymbol{\pi}^{ \pm} \boldsymbol{h}_{\boldsymbol{c}}$	$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{h}_{\boldsymbol{c}}$	6*
$\mathrm{Z}_{\mathrm{c}}(4020)^{0}$	$4023.9 \pm 2.2 \pm 3.8$	fixed	$\pi^{0} h_{c}$	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} h_{c}$	7*
$\mathrm{Z}_{\mathrm{c}}(4025)^{ \pm}$	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	$\boldsymbol{D}^{*} \overline{\boldsymbol{D}}^{*}$	$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow\left(\boldsymbol{D}^{*} \overline{\boldsymbol{D}}^{*}\right)^{ \pm} \boldsymbol{\pi}^{\mp}$	8*
$\mathrm{Z}_{\mathrm{c}}(4025)^{0}$	$4025.5_{-4.7}^{+2,0} \pm 3.1$	$23.0 \pm 6.0 \pm 1.0$	$\boldsymbol{D}^{*} \overline{\boldsymbol{D}}^{*}$	$e^{+} e^{-} \rightarrow\left(D^{*} \bar{D}^{*}\right)^{0} \pi^{0}$	9*

References:
1*: PRL 110, 252001; 2*: PRL 115, 112003; 3*: PRL 112, 022001;
4*: PRD 92, 092006; 5*: arXiv:1509.05620; 6*: PRL 110, 252001;
7*: PRL 113, 212002; 8*: PRL 112, 132001; 9*: PRL 115, 182002

X States at BESIII

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \gamma X(3872) \\
& X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi
\end{aligned}
$$

- $M=3871.9 \pm 0.7 \pm 0.2 \mathrm{MeV} / \mathrm{c}^{2}$
- 「 $<2.4 \mathrm{MeV} / \mathrm{c}^{2}$ @ 90\% C.L
$Y(4260) \rightarrow \gamma X(3872)$ decay was recently observed at BESIII

PRL 112, 092001 (2014)

X(3823) observed in $e^{+} e^{-} \rightarrow \pi^{+} \pi X(3823)$ $X(3823) \rightarrow \gamma \chi_{C 1}$

- $\mathrm{M}=3821.9 \pm 1.3 \pm 0.7 \mathrm{MeV} / \mathrm{c}^{2}$
- Consistent with $\psi\left(1^{3} D_{2}\right)$

Y States

$\mathrm{Y}(4230)$
PRL, 114, 092003

$$
e^{+} e^{-} \rightarrow \omega \chi_{c o}
$$

$$
\mathrm{M}=4230 \pm 8 \pm 6 \mathrm{MeV} / \mathrm{c} 2
$$

$$
\Gamma=38 \pm 12 \pm 2 \mathrm{MeV}
$$

$$
\text { Significance > } 9 \sigma
$$

Possible interpretations:

- Tetraquark
- $\psi(4 S)$
- threshold effect?

Summary

- Charm physics
- Semileptonic analyses (hadronic FF and decay constant)
- $D^{+} \rightarrow K-\pi^{+} e^{+} v_{e} D^{0} \rightarrow K-/ \pi^{-} e^{+} v_{e}, D^{+} \rightarrow \omega e^{+} v_{e}$
- Recent progress in XYZ:
- Neutral Z_{c} partners are found:
- $Z_{c}(3900)^{0}, Z_{c}(3885)^{0}, Z_{c}(4020)^{0}, Z_{c}(4025)^{0}$
- $\psi\left(1^{3} D_{2}\right)(X(3823))$ is observed
- $\mathrm{Y}(4230)$
- BESIII continues to take data
- More interesting results are expected soon

